THESIS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

Information Flow for Web
Security and Privacy

ALEXANDER SJOSTEN

CHALMERS

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2020

Information Flow for Web Security and Privacy
ALEXANDER SJOSTEN

© 2020 ALEXANDER SJOSTEN

ISBN 978-91-7905-348-2

Doktorsavhandlingar vid Chalmers tekniska hogskola
Ny serie nr 4815

ISSN 0346-718X

Technical report 189D
Department of Computer Science and Engineering
Information Security Division

CHALMERS UNIVERSITY OF TECHNOLOGY
SE-412 96 Gothenburg, Sweden
Telephone +46 (0)31-772 10 00

Printed at Chalmers
Gothenburg, Sweden 2020

iii

Information Flow for Web Security and Privacy
Alexander Sjosten

Department of Computer Science and Engineering
Chalmers University of Technology

Abstract

The use of libraries is prevalent in modern web development. But how to
ensure sensitive data is not being leaked through these libraries? This is the
first challenge this thesis aims to solve. We propose the use of information-
flow control by developing a principled approach to allow information-
flow tracking in libraries, even if the libraries are written in a language not
supporting information-flow control. The approach allows library functions
to have unlabel and relabel models that explain how values are unlabeled and
relabeled when marshaled between the labeled program and the unlabeled
library. The approach handles primitive values and lists, records, higher-
order functions, and references through the use of lazy marshaling.

Web pages can combine benign properties of a user’s browser to a finger-
print, which can identify the user. Fingerprinting can be intrusive and often
happens without the user’s consent. The second challenge this thesis aims
to solve is to bridge the gap between the principled approach of handling
libraries, to practical use in the information-flow aware JavaScript interpreter
JSFlow. We extend JSFlow to handle libraries and be deployed in a browser,
enabling information-flow tracking on web pages to detect fingerprinting.

Modern browsers allow for browser modifications through browser exten-
sions. These extensions can be intrusive by, e.g., blocking content or modi-
fying the DOM, and it can be in the interest of web pages to detect which
extensions are installed in the browser. The third challenge this thesis aims to
solve is finding which browser extensions are executing in a user’s browser,
and investigate how the installed browser extensions can be used to decrease
the privacy of users. We do this by conducting several large-scale studies
and show that due to added security by browser vendors, a web page may
uniquely identify a user based on the installed browser extension alone.

It is popular to use filter lists to block unwanted content such as ads and
tracking scripts on web pages. These filter lists are usually crowd-sourced
and mainly focus on English speaking regions. Non-English speaking re-
gions should use a supplementary filter list, but smaller linguistic regions
may not have an up to date filter list. The fourth challenge this thesis aims to
solve is how to automatically generate supplementary filter lists for regions
which currently do not have an up to date filter list.

Keywords: information-flow control, side-effectful libraries, web security,
browser fingerprinting, browser extensions, filter list generation

iv

This thesis is based on the work contained in the following papers, each
presented individually. All the papers aside from Paper III are published at
peer-reviewed conferences, while Paper III is currently under submission.
Paper I, Paper II, and Paper IV in the thesis are the full versions of the
published conference papers.

L.

IL.

III.

Iv.

VL

A Principled Approach to Tracking Information Flow in the Presence
of Libraries

Daniel Hedin, Alexander Sjosten, Frank Piessens, and Andrei Sabelfeld

In Proceedings of the 6th International Conference of Principles of Security
and Trust (POST). Springer, 2017.

Information Flow Tracking for Side-Effectful Libraries

Alexander Sjosten, Daniel Hedin, and Andrei Sabelfeld

In Proceedings of the International Conference on Formal Techniques for
Distributed Objects, Components, and Systems (FORTE). Springer, 2018.

EssentialFP: Exposing the Essence of Browser Fingerprinting
Alexander Sjosten, Daniel Hedin, and Andrei Sabelfeld
Under submission.

Discovering Browser Extensions via Web Accessible Resources
Alexander Sjosten, Steven Van Acker, and Andrei Sabelfeld

In Proceedings of the Seventh ACM Conference on Data and Application
Security and Privacy (CODASPY). ACM, 2017.

. Latex Gloves: Protecting Browser Extensions from Probing and Reve-

lation Attacks

Alexander Sjosten, Steven Van Acker, Pablo Picazo-Sanchez, and Andrei
Sabelfeld

In 26th Annual Network and Distributed System Security Symposium
(NDSS). The Internet Society, 2019.

Filter List Generation for Underserved Regions

Alexander Sjosten, Peter Snyder, Antonio Pastor, Panagiotis Papadopoulos,
and Benjamin Livshits

In WWW "20: The Web Conference 2020. ACM / IW3C2, 2020.

vii

Acknowledgements

Many extraordinary individuals help guide you through the sometimes
bumpy ride of receiving a PhD degree.

First and foremost, I want to thank my supervisor Andrei Sabelfeld for
all support, both academically but also personally with advice to awesome
coffee places, bars, lunch runs to help alleviate the mind from work, and
overall advice on the academic life. Working with you have been awesome.

I also want to thank my co-supervisor Daniel Hedin for great collabora-
tions, gaming nights, beers, and coffees. Whenever I had a problem, I could
always turn to you for advice — something I will always appreciate.

Thank you to all my co-authors for the collaborations. Every research
project has been an experience, and they taught me things both about myself,
but also how to organize my research from you.

I also want to thank all my office mates, both past and present: Pablo B,
Daniel S, Per, Jeff, Iulia, Ivan, and Mohammad, for making the office a truly
fantastic working environment, filled with nice discussions and laughter.

To my other colleagues at Chalmers: my sincerest thanks for help making
Chalmers such a nice place to work during these five years. Especially a big
thank you to the following persons. Boel, for all the tea-drinking, chats and
support. You always watched over me, trying your hardest to keep me sane.
Max and Sandro, for the beers, coffees, chats about everything and nothing,
and simply being terrific people to be around. Benjamin for always having a
smile on your face and always being positive. Believe it or not — it rubs off.
Irene and Claudia, for the support and chats when things were not optimal.
Pablo P, for nice discussions and bouncing ideas. Wolfgang, for advice on
music and teaching. Ana, for trying to give us PhD students the best suited
courses to help make the teaching experience as good as possible. Anton and
Daniel H, for all your support and advice, both at and outside of Chalmers.

To my friends outside of Chalmers: thank you for helping me disconnect
from work and sticking around even though I am not always the best at
keeping in touch. You were always just a message away from sharing a
fika, having lunch, playing board games, watching ice hockey, role-playing
sessions, or simply hanging out. Special thanks to Jakob and Emelia for the
support and discussions.

To my family, for always being there just one phone call away. Your
support over these five years has been great, and knowing I can always take
a trip back home to relax has helped a lot.

I save the best for last. This thesis would not exist had it not been for
Pauline. I doubt I am the easiest person to live with, but you are always there
ready to pick me up when I fall, supporting me every step I take. Words
cannot describe how much that means. You are truly awesome!

Contents

Contents

Introduction
1 Information-Flow Control
2 Browser Fingerprinting
3 Browser Extensions
4 Content blocking with filter lists
5 Contributions
6 Bibliography

Paper I: A Principled Approach to Tracking Information Flow in the

Presence of Libraries

Introduction
CorelanguageC
Lists £ e
Higher-order functions F
Relatedwork
Conclusion e
Bibliography L
SoundnessforC
Soundnessfor £
Soundnessfor F
Supporting lemmas o L L Lo

OO W N Uk N

Paper II: Information Flow Tracking for Side-effectful Libraries

1 Introduction
Syntax
Semantics
Examples
Casestudy
Correctness i e e e

N UGl = W N

CONTENTS iX

7 Relatedwork. 84
8 Conclusion 86
9 Bibliography L. 86
A Fullsyntax 88
B Fulllabeled semantics 89
C Full unlabeled semantics 96
D Low-equivalence 97
E Correctness. 99
F Heapoperations. 101
Paper III: Essential FP: Exposing the Essence of Browser
Fingerprinting 105
1 Introduction L ... 107
2 Approach. 112
3 Design and implementation, 114
4 Empiricalstudy o 0L 119
5 Discussion 126
6 Relatedwork. 129
7 Conclusion 133
8 Bibliography 133
Paper IV: Discovering Browser Extensions via Web Accessible
Resources 143
1 Introduction o ... 145
2 State-of-the-artarmsrace. 149
3 Finding extensions via web accessible resources 151
4 Empirical study of Chrome and Firefox extensions 155
5 Browser extension detection in the Alexa top 100,000 158
6 Measures 161
7 Relatedwork. 164
8 Conclusion 167
9 Bibliography L o o 168
Paper V: Latex Gloves: Protecting Browser Extensions from Probing
and Revelation Attacks 175
1 Introduction 177
2 Background o L. 183
3 Probingattack 185
4 Revelationattack 187
5 Mitigationdesign o L o L 195
6 Proof of concept implementation 197
7 Bvaluation o 202

X CONTENTS
8 Recommendations 204
9 Relatedwork. 205
10 Conclusion e 207
11 Bibliography L. 208
Paper VI: Filter List Generation for Underserved Regions 215
1 Introduction 217
2 Solution Requirements 220
3 Methodology 220
4 Evaluation 230
5 Discussion 235
6 Related Work 239
7 Conclusions i 241
8 Bibliography o o 242

Introduction

Information Flow for Web Security and
Privacy

Businesses today are completely reliant on Information Technology, and
our daily lives are moving online at a fast pace. To give a few examples, we
use streaming services to watch movies and listen to music, we visit web
pages to read the news, buy merchandise and make bank transfers, and we
use social networks to maintain social contacts with friends and families and
schedule events. With more online interaction, the need to protect user data
and privacy from attackers is increasing. Unfortunately, it is difficult to keep
private information secured, even for domain experts. Recent years have
seen hundreds of millions of users having sensitive information stolen [70].
This includes passwords [45, 34, 60, 2], phone numbers [45], and social
security numbers [59], leading to financial losses. In some cases, such as
a web page for having affairs [56], being identified by the stolen data can
lead to loss of lives [39]. However, not every data leak comes from malicious
intent.

When developing a web page, the code is usually divided into two
groups. There is first-party code, which is code written by the web page
developer, and there is third-party code, which provides a service the web
page uses but does not control. The first-party code is trusted, but it can be
difficult to isolate the first-party code from the third-party code and once
the third-party code has been loaded, it is treated as first-party code by the
browser. It is common for web pages to use third-party code to enhance
user experience. As an example, to understand how a user interacts with
a web page and collect statistics about the user’s location and browser
characteristics to help improve the user experience, web pages can employ
analytic scripts. Unfortunately, this can lead to unintended leaks of sensitive
data [64]. In a similar vein, to help yield revenue, a web page can use
advertisements. The ads are usually served through an ad network, which
will try to target ads based on information about the user. Loading ads
through ad networks is usually done through third-party code, and there
have been cases where malware has been included in the served ad, a
process known as malvertising. Malvertising has been known to happen even
in larger ad networks [62], and has hit popular services such as Spotify [55],
news outlets such as The New York Times and the BBC [54], and the London
Stock Exchange [7].

Both analytic scripts and advertisement scripts give good examples of
what can be troublesome with third-party scripts. Information about the
user is being sent to the third-party, who can use this information for mone-
tization. Indeed, to increase the probability of a user clicking on an adver-
tisement, the ad network will try and target ads specific to users. This means
that the more web pages that use the same third-party, the more data the
third-party can gather, leading to seemingly free services being paid for with

4 INTRODUCTION

data instead of money. Put bluntly: users can be tracked across the web by
third-parties. Although this used to be invisible to a user, the last couple of
years have seen regulations such as GDPR [5] try to increase user privacy
online. One method third-parties can use to identify different users is to
perform browser fingerprinting, where seemingly benign data from a user’s
browser is compounded into a fingerprint. The more web pages that use the
same third-party script, the more information about a potential user is given
to the third-party offering the script.

Fortunately, privacy awareness has increased, both from web pages,
browser vendors, and users. Techniques such as the Same-Origin Policy
(SOP) [11], Content Security Policy (CSP) [4], and sandboxing [6] have
emerged to help web pages better control third-party code. Browser vendors
are proposing ways they will combat fingerprinting, and users can shape
their browsing experience through the use of browser extensions, which can
help, e.g., block third-party tracking scripts and advertisement.

The goal of this thesis is to help increase security and privacy online and
will do so in four ways by:

1. defining a principled approach for tracking information flow in third-
party libraries, allowing for a trusted application to use untrusted
third-party code while ensuring no sensitive information is leaked
(Papers I-II).

2. implementing the principled approach presented in Paper II to analyze
how third-party browser fingerprinting scripts behave, compared to,
e.g., analytic scripts (Paper III).

3. presenting how browser extensions can decrease privacy by allowing
web pages to detect if a user has a specific browser extension installed
(Papers IV-V).

4. increasing privacy for smaller linguistic regions by presenting an auto-
mated way for generating filter lists for ad blocking (Paper VI).

Section 1 introduces Information-Flow Control (IFC), which is the main
security mechanism used in this thesis. Section 2 introduces browser finger-
printing, before Section 3 gives a brief background of browser extensions and
how they work. Section 4 introduces how third-party content blocking mainly
is achieved before Section 5 presents the contributions made in this thesis.

1 Information-Flow Control

In modern software development, a common way of checking an applica-
tion’s correctness is through extensive testing and code reviews. This can

1 INFORMATION-FLOW CONTROL 5

Input ——> —> Output

Input—— . Program —> Output
instructions

Input ——> —> Output

Figure 0.1: An abstract program in the batch model

find some security vulnerabilities, but severe ones are still missed (see e.g.
Heartbleed [16] and Shellshock [14]).

Language-based security is a means to express security policies and
enforcement mechanisms using programming language techniques [65].
This thesis focus on an area of language-based security called Information-
Flow Control (IFC). When modeling programs, they can be seen as a black box
and is treated as a function from inputs to outputs. Inputs of a program are
called sources and outputs are called sinks. This modeling approach is known
as a batch model and is depicted in Figure 0.1. For all useful programs, the
outputs of the program are dependent on the inputs, and the dependencies
from the sources to the sinks are defined by the program source code.

Within IFC, we are interested in tracking the information flow from
sources to sinks. This means we are interested in how the sources influence
the sinks, and is done by tracking two types of flows: explicit and implicit
flows. Explicit flows, which corresponds to data flows [46] in traditional
program analysis, is when one or more values are combined into a new
value. As an example, the assignment x = y introduces an explicit flow from
y to x. Implicit flows, which corresponds to control flows [46] in traditional
program analysis, is when a value indirectly influence another through the
control flow of the program. To illustrate, the following program contains
an implicit flow from x to y, as the value of x dictates which branch is taken
and by that, which assignment that is made to y.

1 if (x) {

2 y := true;
3 } else
4
5

——

y := false;
}

To allow for tracking the flow from sources to sinks, IFC is normally
deployed in a multi-level system [40]. The information in a multi-level system
is classified into different levels, based on a lattice. For intuition, consider the
levels unclassified = classified = secret = top secret, where C is a relation over
the partial order of the lattice, defining how the information is allowed to
flow. In this example, unclassified information is allowed to flow anywhere
in the program, but information that is classified secret is only allowed to

6 INTRODUCTION

flow to sinks that are either secret or top secret. When using IFC, the aim is
to enforce the information flow respect the relation =. A multi-level system
can be encoded as a two-level lattice: L = H, where L is public (or low) data
and H is secret (or high) data. The aim in this simplified setting is to enforce
a security property called noninterference [49], which dictates secret sources
do not influence public sinks.

1.1 Noninterference

Noninterference is achieved when all runs of a program, where the only
difference between the runs is the high inputs, do not differ in the low
outputs. Looking at Figure 0.2, to achieve noninterference, the crossed out
dashed red line must not exist in any run of the program.

The work in this thesis only considers a noninterference policy called
termination-insensitive noninterference (TINI), with the implication that infor-
mation leakage through termination channels is not in scope. Intuitively, if
high_valis an integer labeled H, and print is a function that will output on a
public channel, the following program is secure by state-of-the-art IFC tools
using TINL

1 for current in range (0, Number.MAX VALUE) {

2 print(current);
3 if (current == high_val) then loop_forever
4}

The for-loop does not depend on a secret, which means current will be la-
beled L. This makes the output on the public channel through print(current)
valid. However, once current == high_val, the program will execute
loop_forever, which represents an infinite loop. This ensures the last printed
public value will be the same as the secret value high_val, which indicate
there exists an implicit flow through a termination channel [35]. As TINI
does not provide any guarantees for non-terminating runs, it would be
unable to classify the program as insecure.

1.2 Enforcing Information-Flow Control

There are three main branches of IFC enforcement: static, dynamic, and hybrid.
However, as the work in this thesis regarding IFC is focused on dynamic
languages such as JavaScript, only dynamic IFC is considered. The reader is
referred to [65, 52, 43, 44, 51] for more reading about other flavors of IFC.
A dynamic enforcement is executed at runtime, with the use of modified
semantics of the language that allows for security checking. Dynamic IFC
is often more permissive when working in a dynamic language such as

1 INFORMATION-FLOW CONTROL 7

Program

Private input ———t——wc— ——> Private output

Public input —— ~+—— Public output

Figure 0.2: Noninterference. Public output should not depend on private
input

JavaScript, as it has full access to the runtime environment and the runtime
values. Runtime values are augmented with a representation of security
labels, which are copied and joined to reflect the computations of the pro-
gram. To track implicit flows, a program counter (pc) label is used to keep
track of the current execution level, which is known as the security context.
When secret data is used to compute e.g. the condition of an if-statement,
the pc is updated to reflect the label of the condition, and the body of the
if-statement is executed under secret control, which restricts the allowed
side-effects. Indeed, while under secret control, no public side-effects are
allowed to occur, as that indicates an implicit flow. However, it is not only
values that must be protected — implicit flows can also occur in the security
labels. As an example, consider the following code from [37], where 1 and t
are initially labeled L, and h is initially labeled H.

1 1 := true;

2 t := true;

3 if (h == true) then
4 t := false;

5 if (t == true) then
6 1 := false;

If implicit flows are allowed into labels, the security labels of the variables t
and 1 are upgraded if the assignments on Line 4 and Line 6 occur respectively.
The result of executing the program (which can be seen in Table 0.1) leads
to the value of 1 to be the same as the value of h, but retain the low security
label.

To prevent this issue and avoid the implicit flows into labels, the en-
forcement can be based on no sensitive-upgrades (NSU), which disallows
upgrading labels of low values when branching on secret data [36, 71]. With
NSU, the assignment on Line 4 is not allowed, as there would be a low
upgrade under secret control which would cause the program to terminate
before the leak of information occurs.

8 INTRODUCTION

Table 0.1: Trace execution, showing why side effects into labels are dangerous,
and can be used to leak secret information.

Executed code h := truefl h := false®
1 := true; 1 := truel 1 := truel
t := true; t := truel t := truel
if (h == true) then | branch taken, pc = H branch not taken
t := false; t becomes false’” t remains true”
if (t == true) then branch not taken branch taken, pc = L
1 := false; 1 remains true® 1 becomes false”
1 = truel 1 = falsel

Papers I-1I explores how IFC can be lifted to libraries written in a lan-
guage that does not support IFC. The mechanism presented in Papers I-II
follow both TINI and NSU.

Observable Tracking NSU can sometimes be too restrictive and mark
seemingly valid programs as invalid. As an example, the following program
can be argued to be secure, since low_val is never written to a public output.

1 low_val := true;
2 if (high_val == false) then low_val := false;

Similarly, if the value of a low value remains the same, a program can be
deemed secure as an attacker would not be able to gain knowledge about
the secret value high_val.

1 low_val := false;
2 if (high_val == false) then low_val := false;

To allow the latter example, one must employ value sensitivity [41], a topic
that is not covered in this thesis. In Papers I-1I both examples would be
deemed insecure if high_val is false. However, Paper IIl employs observable
tracking [38, 67], which is more permissive than NSU. As the name suggests,
observable tracking tracks the observable implicit flows, as well as explicit
flows. Observable tracking is more permissive, as it would allow implicit
flows as long as the implicit flow is not observable by an attacker. Although the
value of low_val is modified depending on high_val in the first example, it
would be deemed secure with observable tracking since that implicit flow is
not observed by an attacker.

To capture the essence of browser fingerprinting, where many different
data sources are combined, a program must not halt as soon as NSU is
triggered. This makes observable tracking a good fit for Paper 111, as it
presents an approach to detect fingerprinting.

2 BROWSER FINGERPRINTING 9

2 Browser Fingerprinting

When browsing a web page, many properties of the web browser and under-
lying system are accessible by the web page, such as the screen width [13]
and height [12], the user agent [9], and the language [10]. Although the
properties that are accessible by the web page are benign in isolation, com-
bining them may uniquely identify a user [47]. There are web pages, such as
Panopticlick [27] and AmIUnique [19], where users can test their fingerprint-
ability. Similarly, there are libraries such as Fingerprint]S [23] that web pages
can use to aid them in fingerprinting the users. As browser fingerprinting
can help identify a user, this can be used by third-party code to track users
during their browsing session.

What makes browser fingerprint troublesome is twofold: 1) it decreases
the privacy for users, as they can be tracked easier, and 2) the act of finger-
printing is often completely invisible for the users. For users today, there are
many different approaches how to defend themselves, ranging from using a
browser that attempts to make all look the same [31, 30], to adding random
noise to sensitive API calls known to be used when fingerprinting [32], using
privacy budgets [28], to using filter lists to block the fingerprinting script to
be loaded [24, 26]. All of these approaches indicate there is no uniformed
way of detecting fingerprinting, something Paper III attempts to find.

As browser fingerprinting follows the distinct pattern of 1) a script ac-
cessing several different properties and 2) combining the properties into
one value, searching for this pattern can help distinguish fingerprinting
scripts from other types of scripts. Paper III tackles this problem by using
observable IFC.

3 Browser Extensions

If users want to improve the web browsing experience, they can increase
web browser functionality by installing browser extensions. More privacy
aware users may install browser extensions to block advertisement on web
pages, block tracking scripts executed on web pages, or a password manager
to help make it easier to have a unique password for every service. But
this comes at a cost: extensions are given permissions which are greater
than those of a web page. As an example, an ad blocker must read the
network requests made by the web page to determine if a resource should
be blocked or not. But extensions can also inject arbitrary code [3], with
some malicious extensions injecting their own tracking scripts, allowing the
extension developer to track the users on every web page they visit [50].
Even worse, if an extension has a vulnerability, web pages may be allowed

10 INTRODUCTION

to execute arbitrary code with the elevated privilege of the extension [33, 1].
As it stands, the current extension model allows for web pages to exploit
browser extensions to gain access to sensitive data and bypass SOP, which
poses a threat to user privacy [66].

But there is another side to the story as well. It can be in the interest of
a web page to know which extensions a user has installed, as the presence
of an extension can lead to, e.g., financial losses due to less advertisement
revenue, or to prevent arbitrary code being injected when paying with
a credit card online or accessing an internet bank. Web pages can detect
extensions through behavioral analysis, where a web page detects extensions
by looking for effects created by the extensions. An example would be to
check if an element is present or absent on the web page, or analyzing specific
changes to the web page which can be attributed to a specific extension [69,
68]. It may be difficult to determine the exact extension using behavioral
analysis — there are, e.g., several different ad blockers which may have the
same behavior. It can also be costly, as it requires time and effort to analyze
keep up-to-date with extension updates.

Instead, one can exploit the fact that browser extensions must declare
which resources they want to inject onto a web page. These resources, which
are called web accessible resources (WARs), are then accessible from the web
page, and can be used to help detect installed extensions. In Chrome, the
resources have a specific URL pattern, which allows web pages to enumerate
known resources and request them. If the resource is accessible, the web
page knows the extension is installed. Naturally, this is not necessarily good,
which prompted Firefox to try and mitigate the enumeration by randomizing
part of the resource URL. Unfortunately, this randomization is not done often
enough, which means an extension that injects a resource will give the web
page a token which can be used for tracking, uniquely identifying a user.

These are the topics for Papers IV-V, with Paper IV exploring how many
browser extensions that can be trivially detected using WARs, and Paper V
exploring how the use of randomized extension IDs actually can decrease the
privacy for users.

4 Content blocking with filter lists

Filter lists can be used to block undesired content, with hundreds of millions
of web users using filter lists. Simply put, a filter list is a collection of rules,
dictating what resources to block, usually based on the URL. Some browsers
have implemented the use of popular filter lists to help block ads [17] and
tracking scripts [22, 24, 26], and users can also install browser extensions to
increase protection, such as AdBlock [18], Privacy Badger [29], Ghostery [25],

5 CONTRIBUTIONS 11

and Disconnect [20]. This means filter lists can be used to maintain a secure,
private, performant, and appealing web for users. Prior work show filter
lists can help reduce data use [61], protect users from malware [57], and
improve browser performance [48, 63].

Filter lists are usually crowd-sourced, where a group of users manually
label resources to keep the filter lists up to date. Unfortunately, the popular
filter lists focus on English web pages, and non-English regions should use
a supplementary list to block regional resources not popular enough to be
blocked by the global lists. Although there are a plethora of supplementary
filter lists [21], if the regions for the supplementary list have smaller groups of
people maintaining the filter list, e.g., due to being smaller linguistic regions,
the supplementary list may be outdated or even non-existent, making the
protection of users in these regions poorer. Paper VI presents an approach
to automatically generate filter lists, focusing on three regions that have
outdated supplementary filter lists.

5 Contributions

This thesis consists of six papers. Five of the papers (Papers I-1I and Pa-
pers IV-VI) have been published in peer-reviewed conferences, and Paper III
is currently under submission. This section outlines the contributions of each
paper. In broad terms, the papers fall into four different categories, all aimed
to increase web security and privacy by:

1. defining a theoretical framework for allowing IFC in the presence of
libraries. This would allow deploying IFC tools, such as JSFlow, in
settings where the libraries are written in a language which does not
support IFC, by allowing marshaling between the labeled program
and the unlabeled library. The approach enforces TINI and is presented
in Papers I-1I.

2. bridging the gap between the theoretical framework to handle libraries
in an IFC setting by implementing library handling in JSFlow, while
also deploying JSFlow in a browser to detect browser fingerprinting.
This is presented in Paper III, where the theoretical framework of
Paper II is implemented. The resulting implementation uses the IFC
approach observable tracking.

3. looking at how the use of browser extensions can decrease privacy
since web pages can detect and identify users based on the installed
extension(s). This is based on the browser extension’s WARs, and is
presented in Papers IV-V.

12 INTRODUCTION

4. increasing security and privacy for smaller linguistic regions where
the supplementary filter lists are outdated by automatically generate
filter lists rules. This will allow for smaller regions to have better
supplementary filter lists and is presented in Paper VI.

The rest of this section summarizes the papers in this thesis.

5.1 A Principled Approach to Tracking Information Flow in the
Presence of Libraries

Daniel Hedin, Alexander Sjosten, Frank Piessens, and Andrei Sabelfeld

In Paper I, a principled approach to tracking information flow in a program
which use libraries was developed. There has been encouraging progress on
IFC for programs in increasingly complex programming languages. How-
ever, as programs are typically deployed in an environment with rich APIs
and powerful libraries, the need for tracking the propagation of information
in these libraries arises. These APIs and libraries are usually unavailable or
written in a different language that does not support IFC. The setting in this
paper is the program is assumed to be written in an information-flow aware
language, but the library is not. The development of the approach initially
starts with a small core language with the notion of split semantics and state-
ful marshaling, before being extended with lists and higher-order functions.
This paper aims to strike a balance between security and precision to find
a middle ground between “shallow” signature-based modeling of libraries
and “deep”, stateful approaches where library models need to be supplied
manually. The general idea for striking this balance is based on unlabel and
relabel models, which define how labels are removed when marshaling to
the library, and how they are added when marshaling back to the program.
A key aspect of this paper is lazy marshaling, which increases the precision
of the tracking since only used parts of lists and higher-order functions will
affect the label when marshaling from the library to the program. Although
not implemented in Paper I, the notion of lazy marshaling presented ex-
tends naturally to all types of structured data, including records and objects.
Soundness is proved with respect to noninterference.

The paper presented in this thesis is the extended version of the published

paper.

Statement of contribution This paper was co-authored with Daniel Hedin,
Frank Piessens, and Andrei Sabelfeld. Alexander’s contributions were to
define syntax and semantics, implement prototypes for testing the ideas,
and prove soundness of the different systems.

Appeared in: Principles of Security and Trust (POST), Uppsala, Sweden, April
2017

5 CONTRIBUTIONS 13

5.2 Information Flow Tracking for Side-effectful Libraries

Alexander Sjosten, Daniel Hedin, and Andrei Sabelfeld

Paper Il is a continuation of Paper I, where the major contribution is the
addition of side-effects through references. As Paper I passed the model state
as an implicit parameter when marshaling between the program and the
library, handling side-effects would be difficult since every marshaled value
would have their own model state, with no obvious way of propagating
modifications made by one function to another. Instead, Paper II makes a
complete overhaul of the core system and introduces a model heap which
is part of a shared execution environment. When marshaling, instead of
passing the entire model state, we now pass the current stack of heap pointers,
ensuring side-effects from one function is propagated to all functions which
have the same pointers.

The introduced structured data in Paper I was modified to accommodate
the model heap, and records, references, and side-effects were added. Lazy
marshaling remained and was extended to include the records. To allow for
modeling of side-effects, the model language was extended with side-effect
constraints, which models how the side-effects can manipulate data. The
theoretical work in this paper is formalized in Coq [15], showing the system
is sound with respect to noninterference.

Papers I-II provides a theoretical core for how to track information flow
in stateful libraries with structured data and higher-order functions.

The paper presented in this thesis is the extended version of the published

paper.

Statement of contribution This paper was co-authored with Daniel Hedin
and Andrei Sabelfeld. Alexander’s contributions were to define the syntax
and semantics, conduct the case study on a file system library, creating the
examples and implementing the prototype.

Appeared in: International Conference on Formal Techniques for Distributed
Objects, Components, and Systems (FORTE), Madrid, Spain, June 2018

5.3 EssentialFP: Exposing the Essence of Browser Fingerprinting

Alexander Sjosten, Daniel Hedin, and Andrei Sabelfeld

Paper 111 ties the knot between the theory presented in Paper II and practical
use. In the setting of Paper 111, “libraries” corresponds to the DOM API in the
browser. It presents EssentialFP, a principled approach to detecting browser
fingerprinting on the web. EssentialFP employs observable IFC to detect the
pattern of 1) gathering information from a wide browser API surface, and 2)

14 INTRODUCTION

communicating the information to the network, which captures the essence
of fingerprinting.

The implementation of EssentialFP leverages, extends, and deploys
JSFlow [53] in a browser, showing it is possible to spot fingerprinting
on the web by evaluating it on several different categories of web pages.
The evaluated categories are analytics, authentication, bot detection, and
fingerprinting-enhanced Alexa top pages, and we can see a clear distinction
between, e.g., analytics and fingerprinting-enhanced web pages.

As Paper III demonstrates how IFC tracking is possible within the DOM
API, it would be possible to extend this in the future to also include browser
extensions to see if the attacks presented in Papers IV-V can be detected
using IFC as well.

Statement of contribution This paper was co-authored with Daniel Hedin
and Andrei Sabelfeld. Alexander’s contributions were to help with the
implementation of the library handling presented in Paper II, create the
crawler, conduct the empirical study, and analyze the results.

Under submission

5.4 Discovering Browser Extensions via Web Accessible
Resources

Alexander Sjosten, Steven Van Acker, and Andrei Sabelfeld

Web pages can perform browser fingerprinting by combining seemingly
benign properties in the browser and specific configurations of the hard-
ware [47, 58, 42, 27]. Similarly, web pages can detect browser extensions
based on their behavior [69, 68]. Paper IV shows how some extensions can
be detected by web pages without analyzing the behavior and explores what
knowledge can be gained by a web page about a user’s installed extensions.
It uses the fact that browser extensions must declare resources they want to
inject as web accessible resources (WARs), which becomes public resources [8]
and can easily be fetched by any web page.

This work includes a large-scale empirical study, consisting of download-
ing all free extensions for Chrome and Firefox, as well as crawling the Alexa
top 100,000 pages to determine if WARs are used to detect extensions in the
wild. It also includes a discussion of potential measures to avoid this kind of
extension detection.

It is worth to point out that the empirical study for Firefox mainly fo-
cuses on extensions based on the old extension model, and not the current
WebExtensions.

The paper presented in this thesis is the extended version of the published

paper.

5 CONTRIBUTIONS 15

Statement of contribution This paper was co-authored with Steven Van
Acker and Andrei Sabelfeld. Alexander’s contributions were the extensions
experiment (all but the Alexa part), as well as defining the measures and
develop the prototype for detecting extensions.

Appeared in: Proceedings of the Seventh ACM Conference on Data and Applica-
tion Security and Privacy (CODASPY), Scottsdale, AZ, USA, March 2017

5.5 Latex Gloves: Protecting Browser Extensions from Probing
and Revelation Attacks

Alexander Sjosten, Steven Van Acker, Pablo Picazo-Sanchez,
and Andrei Sabelfeld

To help combat the probing of browser extensions used in Paper IV, Fire-
fox randomized the ID, which is part of the URL to a WAR, of a browser
extension for their extension model WebExtensions. Unfortunately, the ran-
domized ID is rarely re-generated, which exacerbates the extension detection
problem by allowing attackers to use the randomized ID as a reliable finger-
print. Paper V presents revelation attacks, where extensions reveal themselves
by injecting content, and with this their random extension ID, on web pages.
Once the random extension ID and the injected resource is in the hand of
the web page, it can start to probe for other known resources to try and iden-
tify the extension. Paper V demonstrates how a combination of revelation
and probing can uniquely identify 90% of all extensions injecting content,
despite a randomization scheme, and presents a series of large-scale studies
to estimate the possible implications of both probing and revelation attacks.
Lastly, the paper presents Latex Gloves: a browser-based mechanism
that enables control over which extensions are loaded on which web pages,
implemented as a proof of concept which blocks both classes of attacks.

Statement of contribution This paper was co-authored with Steven Van
Acker, Pablo Picazo-Sanchez, and Andrei Sabelfeld. Alexander’s contribu-
tions were developing the attacks, conducting empirical studies to decide
which browser extensions are vulnerable, and designing the defence against
both classes of attacks.

Appeared in: Network and Distributed System Security Symposium (NDSS),
San Diego, CA, USA, February 2019

16 INTRODUCTION

5.6 Filter List Generation for Underserved Regions

Alexander Sjosten, Peter Snyder, Antonio Pastor, Panagiotis Papadopoulos,
and Benjamin Livshits

Filter lists play a crucial and growing role in protecting and assisting web
users. The vast majority of popular filter lists are often crowd-sourced, where
a large number of people manually label resources related to undesirable
web resources, such as ads and trackers. Unfortunately, crowd-sourcing in
regions of the web serving languages with (relatively) few speakers can
perform poorly. Paper VI addresses this problem with a deep browser instru-
mentation called PageGraph, which allows for accurately generate request
chains, which is a chain of requests which ended with a resource being
loaded, and an ad classifier which combines perceptual and page-context
features to remain accurate across multiple languages.

With the request chains, the aim is to find as high a point as possible to
block an ad, without breaking the web page. This is applied to three regions
of the web which had poorly maintained filter lists: Sri Lanka, Hungary, and
Albania, generating several new filter list rules and increased the overall
blocking by 30.1% across the regions.

This paper was the result of an internship at Brave Software during the
summer of 2019.

Statement of contribution This paper was co-authored with Peter Snyder,
Antonio Pastor, Panagiotis Papadopoulos, and Benjamin Livshits. Alexan-
der’s contributions were to help developing the browser instrumentation
PageGraph, the full implementation of the hybrid classifier (aside from the
perceptual classifier), conducting all the experiments, the inclusion chain
creation, and the filter list rule generation.

Appeared in: Proceedings of the Web Conference (WWW), Taipei, Tniwan, April
2020

6 Bibliography

[1] Adobe: Adobe Acrobat Force-Installed Vulnerable Chrome Exten-
sion. https://bugs.chromium.org/p/project-zero/issues/detail?id=
1088. accessed: June 2020.

[2] Canva Security Incident — May 24 FAQs. https://support.canva.com/
contact/customer-support/may-24-security-incident- faqs/. ac-
cessed: June 2020.

https://bugs.chromium.org/p/project-zero/issues/detail?id=1088
https://bugs.chromium.org/p/project-zero/issues/detail?id=1088
https://support.canva.com/contact/customer-support/may-24-security-incident-faqs/
https://support.canva.com/contact/customer-support/may-24-security-incident-faqs/

6 BIBLIOGRAPHY 17

[3]

[4]

[5]

[6]

[7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]
[16]
[17]

[18]

Content Scripts. https://developer.chrome.com/extensions/
content_scripts. accessed: June 2020.

Content Security Policy (CSP). https://developer.mozilla.org/en-US/
docs/Web/HTTP/CSP. accessed: June 2020.

General Data Protection Regulation. https://gdpr-info.eu/. accessed:
June 2020.

HTML Living Standard. https://html.spec.whatwg.org/#sandboxing. ac-
cessed: June 2020.

London Stock Exchange site shows malicious adverts. https://
www.bbc.com/news/technology-12597819. accessed: June 2020.

Manifest - Web Accessible Resources. https://developer.chrome.com/
extensions/manifest/web_accessible_resources. accessed: June 2020.

Navigatorid.useragent. https://developer.mozilla.org/en-US/docs/
Web/API/NavigatorID/userAgent. accessed: June 2020.

Navigatorlanguage.language. https://developer.mozilla.org/en-US/
docs/Web/API/NavigatorLanguage/language. accessed: June 2020.

Same-origin policy. https://developer.mozilla.org/en-US/docs/Web/
Security/Same-origin_policy. accessed: June 2020.

Screen.height. https://developer.mozilla.org/en-US/docs/Web/API/
Screen/height. accessed: June 2020.

Screen.width. https://developer.mozilla.org/en-US/docs/Web/API/
Screen/width. accessed: June 2020.

Shellshock: All you need to know about the Bash Bug vulnerability.
https://community.broadcom.com/symantecenterprise/communities/
community-home/librarydocuments/viewdocument?DocumentKey=
5ee60f4e-030f-4691-b5b4-dc3c9e3701d4&CommunityKey=1ecf5f55-
9545-44d6-b0f4-4ed4a7f5f5e68&tab="1ibrarydocuments. accessed: June
2020.

The Coq Proof Assistant. https://cog.inria.fr/. accessed: June 2020.
The Heartbleed Bug. https://heartbleed.com. accessed: June 2020.

What is "Shields"? https://support.brave.com/hc/en-us/articles/
360022973471-What-is-Shields-. accessed: June 2020.

AdBlock. https://getadblock.com/, accessed: June 2020.

https://developer.chrome.com/extensions/content_scripts
https://developer.chrome.com/extensions/content_scripts
https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP
https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP
https://gdpr-info.eu/
https://html.spec.whatwg.org/#sandboxing
https://www.bbc.com/news/technology-12597819
https://www.bbc.com/news/technology-12597819
https://developer.chrome.com/extensions/manifest/web_accessible_resources
https://developer.chrome.com/extensions/manifest/web_accessible_resources
https://developer.mozilla.org/en-US/docs/Web/API/NavigatorID/userAgent
https://developer.mozilla.org/en-US/docs/Web/API/NavigatorID/userAgent
https://developer.mozilla.org/en-US/docs/Web/API/NavigatorLanguage/language
https://developer.mozilla.org/en-US/docs/Web/API/NavigatorLanguage/language
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
https://developer.mozilla.org/en-US/docs/Web/API/Screen/height
https://developer.mozilla.org/en-US/docs/Web/API/Screen/height
https://developer.mozilla.org/en-US/docs/Web/API/Screen/width
https://developer.mozilla.org/en-US/docs/Web/API/Screen/width
https://community.broadcom.com/symantecenterprise/communities/community-home/librarydocuments/viewdocument?DocumentKey=5ee60f4e-030f-4691-b5b4-dc3c9e3701d4&CommunityKey=1ecf5f55-9545-44d6-b0f4-4e4a7f5f5e68&tab=librarydocuments
https://community.broadcom.com/symantecenterprise/communities/community-home/librarydocuments/viewdocument?DocumentKey=5ee60f4e-030f-4691-b5b4-dc3c9e3701d4&CommunityKey=1ecf5f55-9545-44d6-b0f4-4e4a7f5f5e68&tab=librarydocuments
https://community.broadcom.com/symantecenterprise/communities/community-home/librarydocuments/viewdocument?DocumentKey=5ee60f4e-030f-4691-b5b4-dc3c9e3701d4&CommunityKey=1ecf5f55-9545-44d6-b0f4-4e4a7f5f5e68&tab=librarydocuments
https://community.broadcom.com/symantecenterprise/communities/community-home/librarydocuments/viewdocument?DocumentKey=5ee60f4e-030f-4691-b5b4-dc3c9e3701d4&CommunityKey=1ecf5f55-9545-44d6-b0f4-4e4a7f5f5e68&tab=librarydocuments
https://coq.inria.fr/
https://heartbleed.com
https://support.brave.com/hc/en-us/articles/360022973471-What-is-Shields-
https://support.brave.com/hc/en-us/articles/360022973471-What-is-Shields-
https://getadblock.com/

18

[19]
[20]
[21]
[22]

[23]

[24]

[25]
[26]

[27]
[28]

[29]
[30]

[31]
[32]

[33]

[34]

INTRODUCTION

AmlUnique. https://amiunique.org/, accessed: June 2020.
Disconnect. https://disconnect.me/, accessed: June 2020.
FilterLists. https://filterlists.com/, accessed: June 2020.

Fingerprinting Protections. https://github.com/brave/brave-browser/
wiki/Fingerprinting-Protections, accessed: June 2020.

Fingerprint]S. https://fingerprintjs.com/open-source/, accessed:
June 2020.

Firefox 72 blocks third-party fingerprinting resources. https://
blog.mozilla.org/security/2020/01/07/firefox-72-fingerprinting/,
accessed: June 2020.

Ghostery. https://www.ghostery.com/, accessed: June 2020.

Learn about tracking prevention in Microsoft Edge. https:
//support.microsoft.com/en-us/help/4533959/microsoft-edge-learn-
about-tracking-prevention, accessed: June 2020.

Panopticlick. https://panopticlick.eff.org, accessed: June 2020.

Potential uses for the Privacy Sandbox. https://blog.chromium.org/
2019/08/potential-uses-for-privacy-sandbox.html, accessed: June
2020.

Privacy Badger. https://privacybadger.org/, accessed: June 2020.

Safari Privacy Overview. https://www.apple.com/safari/docs/
Safari_White_Paper_Nov_2019.pdf, accessed: June 2020.

Tor. https://www.torproject.org/, accessed: June 2020.

What's Brave Done For My Privacy Lately? Episode #3: Finger-
print Randomization. https://brave.com/whats-brave-done-for-my-
privacy-lately-episode3/, accessed: June 2020.

C.S. Advisory. Cisco WebEx Browser Extension Remote Code Execu-
tion Vulnerability. https://tools.cisco.com/security/center/content/
CiscoSecurityAdvisory/cisco-sa-20170717-webex. accessed: June 2020.

C. Aiello. Under Armour says data breach affected about 150 mil-
lion MyFitnessPal accounts. https://www.cnbc.com/2018/03/29/under -

armour-stock-falls-after-company-admits-data-breach.html. ac-
cessed: June 2020.

https://amiunique.org/
https://disconnect.me/
https://filterlists.com/
https://github.com/brave/brave-browser/wiki/Fingerprinting-Protections
https://github.com/brave/brave-browser/wiki/Fingerprinting-Protections
https://fingerprintjs.com/open-source/
https://blog.mozilla.org/security/2020/01/07/firefox-72-fingerprinting/
https://blog.mozilla.org/security/2020/01/07/firefox-72-fingerprinting/
https://www.ghostery.com/
https://support.microsoft.com/en-us/help/4533959/microsoft-edge-learn-about-tracking-prevention
https://support.microsoft.com/en-us/help/4533959/microsoft-edge-learn-about-tracking-prevention
https://support.microsoft.com/en-us/help/4533959/microsoft-edge-learn-about-tracking-prevention
https://panopticlick.eff.org
https://blog.chromium.org/2019/08/potential-uses-for-privacy-sandbox.html
https://blog.chromium.org/2019/08/potential-uses-for-privacy-sandbox.html
https://privacybadger.org/
https://www.apple.com/safari/docs/Safari_White_Paper_Nov_2019.pdf
https://www.apple.com/safari/docs/Safari_White_Paper_Nov_2019.pdf
https://www.torproject.org/
https://brave.com/whats-brave-done-for-my-privacy-lately-episode3/
https://brave.com/whats-brave-done-for-my-privacy-lately-episode3/
https://tools.cisco.com/security/center/content/CiscoSecurityAdvisory/cisco-sa-20170717-webex
https://tools.cisco.com/security/center/content/CiscoSecurityAdvisory/cisco-sa-20170717-webex
https://www.cnbc.com/2018/03/29/under-armour-stock-falls-after-company-admits-data-breach.html
https://www.cnbc.com/2018/03/29/under-armour-stock-falls-after-company-admits-data-breach.html

6 BIBLIOGRAPHY 19

[35] A. Askarov, S. Hunt, A. Sabelfeld, and D. Sands. Termination-
Insensitive Noninterference Leaks More Than Just a Bit. In ESORICS,
2008.

[36] T. H. Austin and C. Flanagan. Efficient purely-dynamic information
flow analysis. In PLAS, 2009.

[37] T. H. Austin and C. Flanagan. Permissive Dynamic Information Flow
Analysis. In PLAS, 2010.

[38] M. Balliu, D. Schoepe, and A. Sabelfeld. We Are Family: Relating
Information-Flow Trackers. In ESORICS, 2017.

[39] C. Baraniuk. Ashley Madison: ‘Suicides’ over website hack. http:
//www.bbc.com/news/technology-34044506. accessed: June 2020.

[40] D.E. Bell and L. J. LaPadula. Secure Computer Systems: Mathematical
Foundations. Technical report, 1973.

[41] L. Bello, D. Hedin, and A. Sabelfeld. Value Sensitivity and Observable
Abstract Values for Information Flow Control. In LPAR, 2015.

[42] Y. Cao, S. Li, and E. Wijmans. (Cross-)Browser Fingerprinting via OS
and Hardware Level Features. In NDSS, 2017.

[43] D. Chandra and M. Franz. Fine-Grained Information Flow Analysis
and Enforcement in a Java Virtual Machine. In ACSAC, 2007.

[44] R. Chugh,]J. A. Meister, R. Jhala, and S. Lerner. Staged information flow
for javascript. In PLDI, 2009.

[45] C. Cimpanu. Hacker selling data of 538 million Weibo
users. https://www.zdnet.com/article/hacker-selling-data-of-538-
million-weibo-users/. accessed: June 2020.

[46] D.E. Denning and P. J. Denning. Certification of Programs for Secure
Information Flow. Commun. ACM, 1977.

[47] P. Eckersley. How Unique Is Your Web Browser? In PETS, 2010.

[48] K. Garimella, O. Kostakis, and M. Mathioudakis. Ad-blocking: A Study
on Performance, Privacy and Counter-measures. In WebSci, 2017.

[49] J. A. Goguen and]. Meseguer. Security policies and security models. In
S&P, 1982.

[50] D. Hausknecht,]J. Magazinius, and A. Sabelfeld. May I? - Content
Security Policy Endorsement for Browser Extensions. In DIMVA, 2015.

http://www.bbc.com/news/technology-34044506
http://www.bbc.com/news/technology-34044506
https://www.zdnet.com/article/hacker-selling-data-of-538-million-weibo-users/
https://www.zdnet.com/article/hacker-selling-data-of-538-million-weibo-users/

20 INTRODUCTION

[51] D. Hedin, L. Bello, and A. Sabelfeld. Value-Sensitive Hybrid Informa-
tion Flow Control for a JavaScript-Like Language. In CSF, 2015.

[52] D. Hedin and A. Sabelfeld. A Perspective on Information-Flow Control.
In Software Safety and Security. 2012.

[53] D. Hedin and A. Sabelfeld. Information-Flow Security for a Core of
JavaScript. In CSF, 2012.

[54] A. Hern. Major sites including New York Times and BBC hit by
‘ransomware’ malvertising. https://www.theguardian.com/technology/
2016/mar/16/major-sites-new-york-times-bbc- ransomware-
malvertising. accessed: June 2020.

[55] A. Hern. Spotify hit by ‘malvertising’ in app. https:
//www.theguardian.com/technology/2016/0ct/06/spotify-hit-by-
malvertising-in-app. accessed: June 2020.

[56] B. Krebs. Online Cheating Site AshleyMadison Hacked.
https://krebsonsecurity.com/2015/07/online-cheating-site-
ashleymadison-hacked/. accessed: June 2020.

[57] Z. Li, K. Zhang, Y. Xie, F. Yu, and X. Wang. Knowing your enemy:
understanding and detecting malicious web advertising. In CCS, 2012.

[58] K. Mowery and H. Shacham. Pixel Perfect: Fingerprinting Canvas in
HTMLS. In Web 2.0 Security and Privacy (W2SP), 2012.

[59] A. Ng and S. Musil. Equifax data breach may affect nearly half the
US population. https://www.cnet.com/news/equifax-data- leak-hits-
nearly-half-of-the-us-population/. accessed: June 2020.

[60] J. Pagliery. Hackers selling 117 million LinkedIn passwords. https:
//money.cnn.com/2016/05/19/technology/linkedin-hack/index.html. ac-
cessed: June 2020.

[61] A. Parmar, M. Toms, C. Dedegikas, and C. Dickert. Adblock
Plus Efficacy Study. http://www.sfu.ca/content/dam/sfu/snfchs/pdfs/
Adblock.Plus.Study.pdf. accessed: June 2020.

[62] D. Pauli. Malware menaces poison ads as Google, Yahoo! look
away. https://www.theregister.com/2015/08/27/malvertising_feature.
accessed: June 2020.

[63] E. Pujol, O. Hohlfeld, and A. Feldmann. Annoyed Users: Ads and
Ad-Block Usage in the Wild. In IMC, 2015.

https://www.theguardian.com/technology/2016/mar/16/major-sites-new-york-times-bbc-ransomware-malvertising
https://www.theguardian.com/technology/2016/mar/16/major-sites-new-york-times-bbc-ransomware-malvertising
https://www.theguardian.com/technology/2016/mar/16/major-sites-new-york-times-bbc-ransomware-malvertising
https://www.theguardian.com/technology/2016/oct/06/spotify-hit-by-malvertising-in-app
https://www.theguardian.com/technology/2016/oct/06/spotify-hit-by-malvertising-in-app
https://www.theguardian.com/technology/2016/oct/06/spotify-hit-by-malvertising-in-app
https://krebsonsecurity.com/2015/07/online-cheating-site-ashleymadison-hacked/
https://krebsonsecurity.com/2015/07/online-cheating-site-ashleymadison-hacked/
https://www.cnet.com/news/equifax-data-leak-hits-nearly-half-of-the-us-population/
https://www.cnet.com/news/equifax-data-leak-hits-nearly-half-of-the-us-population/
https://money.cnn.com/2016/05/19/technology/linkedin-hack/index.html
https://money.cnn.com/2016/05/19/technology/linkedin-hack/index.html
http://www.sfu.ca/content/dam/sfu/snfchs/pdfs/Adblock.Plus.Study.pdf
http://www.sfu.ca/content/dam/sfu/snfchs/pdfs/Adblock.Plus.Study.pdf
https://www.theregister.com/2015/08/27/malvertising_feature

6 BIBLIOGRAPHY 21

[64] O. Riisédnen. Trackers leaking bank account data. http://
www.windytan.com/2015/04/trackers-and-bank-accounts.html. accessed:
June 2020.

[65] A. Sabelfeld and A. C. Myers. Language-based information-flow se-
curity. IEEE Journal on Selected Areas in Communications, 21(1):5-19,
2003.

[66] D. E. Somé. 7empoweb: Empowering web applications with browser
extensions.

[67] C. Staicu, D. Schoepe, M. Balliu, M. Pradel, and A. Sabelfeld. An
Empirical Study of Information Flows in Real-World JavaScript. In
PLAS, 2019.

[68] O. Starov, P. Laperdrix, A. Kapravelos, and N. Nikiforakis. Unnecessar-
ily Identifiable: Quantifying the fingerprintability of browser extensions
due to bloat. In WWW, 2019.

[69] O. Starov and N. Nikiforakis. XHOUND: Quantifying the Fingerprint-
ability of Browser Extensions. In S&P, 2017.

[70] D. Swinhoe. The 15 biggest data breaches of the 21st cen-
tury. https://www.csoonline.com/article/2130877/the-biggest-data-
breaches-of-the-21st-century.html. accessed: June 2020.

[71] S. A. Zdancewic. Programming Languages for Information Security. PhD
thesis, Cornell University, 2002.

http://www.windytan.com/2015/04/trackers-and-bank-accounts.html
http://www.windytan.com/2015/04/trackers-and-bank-accounts.html
https://www.csoonline.com/article/2130877/the-biggest-data-breaches-of-the-21st-century.html
https://www.csoonline.com/article/2130877/the-biggest-data-breaches-of-the-21st-century.html

22

INTRODUCTION

Paper 1

A Principled Approach to Tracking
Information Flow in the Presence of
Libraries
Daniel Hedin, Alexander Sjosten, Frank Piessens, Andrei Sabelfeld

Principles of Security and Trust (POST), Uppsala, Sweden, April 2017

23

1 INTRODUCTION 25

Abstract

There has been encouraging progress on information flow control
for programs in increasingly complex programming languages, tracking
the propagation of information from input sources to output sinks. Yet,
programs are typically deployed in an environment with rich APIs and
powerful libraries, posing challenges for information flow control when
the code for these APIs and libraries is either unavailable or written in a
different language.

This paper presents a principled approach to tracking information
flow in the presence of libraries. With the goal to strike the balance
between security and precision, we present a framework that explores
the middle ground between the “shallow”, signature-based modeling of
libraries and the “deep”, stateful approach, where library models need
to be supplied manually. We formalize our approach for a core language,
extend it with lists and higher-order functions, and establish soundness
results with respect to the security condition of noninterference.

1 Introduction

The prevalent way to extend a language with functionality, e.g., to interact
with its execution environment, is via libraries. As an example, consider
a library that provides a collection of functions to provide the language
with network capabilities. Since the language functionality in such cases is
fundamentally extended, these libraries cannot be written in the language
itself, but must be provided by some other means such as a foreign function
interface (e.g. [26] in Java, [33] in Haskell and [29] in node.js) or via the
execution environment.

Recently, there has been a growing interest in retrofitting libraries with dy-
namic execution monitors to provide additional runtime checks. One promi-
nent example of this is monitors for secure information flow [15, 1, 18, 17, 3].
The interest in information flow control lies in the realization that access
control is often not enough in cases when it is important what a program
does with the information it has access to [30]. As an example, when a user
enters credit card information into an application to perform a purchase,
information flow control can guarantee that the credit card information is
only used for the purpose of enabling the purchase (i.e., by passing the
information to the payment provider) and is not being sent or gathered for
illicit purposes.

Dynamic monitoring is similar to dynamic type checking, and works
by augmenting the semantics of the language, with additional runtime
information that provides an abstract view of the execution and enables
enforcement of the desired properties. In the case of dynamic types, the

A PRINCIPLED APPROACH TO TRACKING INFORMATION FLOW
26 IN THE PRESENCE OF LIBRARIES

additional information is a runtime representation of the types of values,
and in the case of information flow control it is the security level.

In the presence of libraries written in another language, dynamic moni-
tors face two important challenges: (i) the library is not able to work with
values in the augmented semantics, and, more fundamentally, (ii) is not
able to maintain the abstract view of the execution. With respect to the first
challenge, some kind of marshaling must take place — this already occurs
for the values of the language, but must be extended to first remove any
additional runtime information. With respect to the second challenge, it is
important that the removed runtime information is kept, in order to be able
to reestablish the augmentation, once the library returns.

Thus, the challenges above translate to these pivotal questions:

(i) how should the runtime augmentation be removed when entities are
passed from the monitored program into the unmonitored library, and

(if) how should the runtime augmentation be reinstated when entities are
passed from the unmonitored library to the monitored program.

On the surface, those questions may seem fairly straightforward, but prove
surprisingly involved in the presence of common programming language
features, such as structured data and higher-order functions.

In the work targeting secure information flow, one can identify two ex-
tremes with respect to library models [15, 6, 1, 19, 18, 27, 17, 3]. On one
hand are the shallow models, essentially corresponding to providing static
boundary types, and on the other hand are the deep models, where the infor-
mation flow inside the library is modeled in detail, frequently requiring a
reimplementation of the library in the monitored semantics.

In JavaScript, already the standard API introduces information flow
challenges. Consider, for instance, the following example, that makes use
of the standard JavaScript function Array.every which, given a predicate,
returns true if every element in the array on which every is called, is in the
extension of the predicate.

[1,2,3,0,4,5].every(function(elem) { return elem > 0; })

In both JSFlow [17, 16] and FlowFox [13, 14], accurate modeling of many
library functions, such as Array.every, requires hand-written, deep models.
This is both labor-intensive and hard to maintain, not scaling to models for
a rich set of libraries, as would be needed in a rich execution environment
such as a browser or node.js [24, 25, 23]. For this reason, JSFlow attempts
at providing a way of automatically wrapping libraries. However, JSFlow’s
approach is somewhat ad hoc and lacks formal underpinning. While for
simple cases correctness is evident, it is unclear if this approach scales to

2 CORE LANGUAGE C 27

more complex interactions with libraries such as for promises [21], e.g., when
functions are passed to and from the library.

Contribution We investigate how to provide concise library models, in the
setting of dynamic information flow control, for a small functional language.
We present the development in a gradual way and investigate different
programming language constructs in isolation, as extensions of a common
core language. The modeling is such, that the results combine with relative
ease. For space reasons, we limit ourselves to the treatment of structured
data and higher-order functions. The main contributions of this paper are:

e a split semantics with stateful marshaling for a simple core;

* a split semantics with stateful marshaling for structured data in the
form of lists and the concept of lazy marshaling;

* a split semantics for higher-order functions that introduces the concept
of abstract names, enabling the connection between callbacks and label
models.

The focus of this paper is on the stateful marshaling, leaving the label
models relatively simple. The presented model does, however, allow for
more advanced label models including (value) dependent models that har-
ness the power coming from the knowledge of runtime values. We discuss
possible extensions beyond the limitations of the provided label model
language.

Outline The rest of the paper is laid out as follows. Section 2 introduces
the core language and the notion of split semantics with stateful marshaling.
Section 3 investigates lists in terms of an extension to the core language
and introduces the notion of lazy marshaling. Section 4 investigates higher-
order functions in terms of an extension to the core language and introduces
the notion of abstract names. Finally, Section 5 discusses related work, and
Section 6 discusses future work and concludes.

2 Core language C

We present syntax and split semantics with stateful marshaling for a small
core language. The notion of split semantics entails that a program is built
up by two distinct parts: 1) the monitored program executing a labeled infor-
mation flow aware semantics, and 2) the unmonitored library, executing an
unlabeled standard semantics. For simplicity, the two parts of the program

A PRINCIPLED APPROACH TO TRACKING INFORMATION FLOW
28 IN THE PRESENCE OF LIBRARIES

share syntax and semantics — the labeled semantics is an extension of the un-
labeled. This is to keep the exposition small and the value-level marshaling
to a minimum and is not a fundamental limitation of the approach.

2.1 Syntax
The syntax of the core language is defined as follows.
ex=nl|x|if eg theneselsees|letx =erines| fel| fupe|er @ ey

Let « denote a list of x, where [| is the empty list and - is the cons operator.
The top-level definitions, d ::= f & = e, are restricted to function definitions,
and function models, m = f @ ¢ — 7. A function model defines how
labeled values are marshaled to the unlabeled function, ¢, and how the
unlabeled return value is marshaled back into the labeled world, ~, see
below. All unlabeled functions called from the labeled world must have a
corresponding function model.

A program is a triple, (d, d, m), where the first component corresponds
to the monitored program, the second component corresponds to the un-
monitored library, and the third component is the library model consisting
of function models. Execution starts in the main function of the monitored
program. In the following, we refer to the monitored part of the program as
the program, and the unmonitored library as the library.

The bodies of functions are made up of expressions, consisting of inte-
gers n, identifiers x and f (denoting functions), conditional branches, let
bindings, function calls, library calls and binary operators @. Library calls
are not allowed in the library part of the program.

2.2 Semantics

As indicated above, C has two semantics, one labeled and one unlabeled. To
distinguish between the two, without unnecessary notational burden, we
use X to denote an entity in the labeled semantics corresponding to X in the
unlabeled semantics.

Values The labeled values, ©, and unlabeled values, v, are defined as labeled
and unlabeled integers respectively. The labels, ¢, are taken from a two-point
upper semi-lattice L = H, where L denotes low (“public” when modeling
confidentiality or “trusted” when modeling integrity) and H denotes high
(“secret” when modeling confidentiality or “untrusted” when modeling in-
tegrity). While we focus on confidentiality throughout the paper, information
flow integrity can be modeled dually [5].

b u=nt V=N

2 CORE LANGUAGEC 29

For labels let ¢; L {3 denote the least upper bound of ¢; and /3, and let
o2 = vlrolz for § = ol

Stateful marshaling A function model defines how to marshal values
between the program and the library in terms of the parameters and the
return value, i.e., how to unlabel the parameters and label the result. Since
the result is dependent on the parameters, it follows that the label of the
result must be dependent on the labels of the parameters. For this reason,
the removed labels must be stored for the duration of the library call in such
a way that they can be used when relabeling the result. To achieve this, the
unlabel process creates a model state', € : « — ¢, based on identifiers «, given
by the unlabel model, . This model state is used in the labeling process in
the interpretation of the label model, v. The unlabel and label models follow
the structure of the values, and are defined as follows for the core language

Y=« Y=k

where k ::= | K1 U ko | £ and the interpretation of x in a model state ¢ is
given by

[[a]]g =
[[K]]g = !

[rk1 w fiz]]5 = [[l-il]]6 L [[/Qg]]5

L if {[a] is undefined
{[a] otherwise

From this, we define an unlabel operation, vt | @, and a label operation,
v ¢ K, as follows

Via=@lamt]) vies =l

The label operation takes an unlabeled value, v, a label model v = x and a
model state, ¢ and labels the value in accordance with the interpretation of
the label model in the model state. The unlabel operation takes a labeled
value, v, and an unlabel model, ¢ = «, and returns an unlabeled value and
a model state, {. The unlabel operation is lifted to sequences of values by
chaining, in the following way, where L1 denotes disjoint union.

141 = (LD

[
09 lpp = (v-0.&1&) whered | p = (v,61)and 8 | ¢ = (v,)

Note that here, and in the following, for simplicity, we identify sets with the meta variables
ranging over them.

A PRINCIPLED APPROACH TO TRACKING INFORMATION FLOW
30 IN THE PRESENCE OF LIBRARIES

N o] = v
" dEnwon v dEx v

5':31\/\/\»1]1 (5':62\'\’\/)'02
0 e1®ey o v @ U2
dEervwsv v#0 dfEewov

op

if

o § = if eq then ey else e3 v v

'f dEervwsv v=0 JdFEewov

e § = if eq then ey else e3 v~ v

5 e1 o v Alfl = (wrey) G v
8|z — v1] = eg v vy [x — v] Eef oo
let - app
0 k= let x = ey in eg v vy b= fewov

Figure 1.1: Unlabeled semantics

Unlabeled semantics Let the unlabeled variable environments, ¢ : x — v,
be maps from identifiers to values, and let A : f — (z,e) be a map from
identifiers to function definitions representing the unmonitored library. For
simplicity we leave A implicit, since it is unmodified by the execution.
Update of § is defined recursively as

(52 = (51[1,‘ — ’U] 53 = 62[1:7' — ’UT]

61[1"513r'—>1}'1)r]—>53 5[[]»—)’0]—)8

The unlabeled semantics, defined in Figure 1.1, is of the form § = e v v,
read, expression e evaluates to v in the unlabeled variable environment ¢.
For space reasons, since the unlabeled semantics is entirely standard, it is
not explained further.

Labeled semantics Let the labeled variable environments, § : = — 9, be
maps from identifiers to labeled values, let A : f — (x,¢) be a map from
identifiers to function definitions representing the monitored program, and
let A : f — (¢,7) represent the library model. The labeled semantics, defined
in Figure 1.2, is of the form 5 = e — ¥, read, expression e evaluates to ¢ in
the labeled variable environment §. Similarly to the unlabeled semantics we
leave A, A, and A implicit. Also, as for the unlabeled semantics, updating 5
is defined recursively as

32 = 51[33 — ’ﬁ] 53 = gg[ilir — ﬁT]

bilz - @y > 0Dy — b3 S[[]—8] -6

2 CORE LANGUAGEC 31

. olz] =10

int—; var—;
5)=61—>vf1 5|=62—>v§2
Sl: e1 @ eg — (v) @vy)rttz

bber—vt v£0 dlkey—
¢

()

ify =
0 = if ey then eg else eg — ©
beer—v! v=0 bdke3—D

¢

ifo —
0 = if e1 then eg else e3 — ©

8'261—>©1 5[w;->{;ﬂ':e2_>@2

let —
0= let x = ey in ey — Oy

Alf] = @,ey) Alf) = (@ey) Alf] = (¢.7)

d=e— d=e—1® | = (v,§)
. [x— D) Eef -0 b [x—v]Eevwov vley=1D
S fe—0 S fme—o

Figure 1.2: Labeled semantics

Of the rules for the core language, 1ib is the only non-standard. It cor-
responds to the situation, where an unmonitored library function is called
from the monitored semantics. Execution proceeds as follows. First, the func-
tion definition, (x, ey), and the function model, (¢, 7), are found, then the
parameters, e, are evaluated to labeled values, ©. Before being passed to the
library, the labeled values are first unlabeled in accordance with the function
model, resulting in unlabeled values, v, and a model state, . The body of the
library function is evaluated in an environment [« — v], where the formal
parameters of the function maps to the corresponding arguments, and the
result, v, is labeled in accordance with the function model, interpreted in the
model state, £, produced by the previous unlabeling.

2.3 Correctness

We prove correctness under the assumption that the library model correctly
models the library, i.e., that every modeled function in the library respects
its function model. Semantically, we express this in terms of the execution of
the library, the unlabeling of the parameters and the labeling of the result.

A PRINCIPLED APPROACH TO TRACKING INFORMATION FLOW
32 IN THE PRESENCE OF LIBRARIES

Definition 1 (Correctness of the library models). A library model correctly
models a library if every function, f, in the library, A[f] = (x, e), respects the
associated function model, A[f] = (¢,), if present.

Vi AL = (,7) A ALf] = (=€)
A= AD = (v,) AD | p= (V¢
AMz—vlEevwsvalz—v]Eews v =0ty >0 1y

As is standard, we prove noninterference as the preservation of a low-
equivalence relation under execution, defined as follows for values and
labeled variable environments.

S

dom()
Va € dom(6) .

n-~n ny ~ng 1)

(

Oq>g_‘

12

om)A
[] ¢'[]

0
S

Under the assumption that Definition 1 holds, we can prove noninterfer-
ence for labeled execution.

Theorem 1 (Noninterference for labeled execution).
b~ Adle—sind et =b~0

Proof. By induction on the height of the derivation tree § = ¢ — ©. The proof
of this and the other theorems are reported in Appendix A, Appendix B and
Appendix C. O

2.4 Examples

To illustrate how C can be used, we give two examples. The first example is
the identity function.

id :: aa —» «
id x = x

The function model for id expresses that the label of the result should be the
label of the parameter. This is computed by storing the label under the name
o in the model state, when id is called, and then interpreting the « in the
resulting model state, when the function returns.

The second example is the min function, which illustrates how more than
one label can be stored into the model state.

min :: @] a2 — a1 UQ
min x y = if x <y then x else y

3 LISTS L 33

Since the result of the min function is dependent on both parameters, the
result should be the least upper bound of the labels of the parameters. To
achieve this, both labels are stored in the model state on the call; the first label
as o and the second as . The function model uses the label expression
o U ag, which, when interpreted in the model state results in the least upper
bound of the labels.

2.5 A note on the policy language

While we, in this work, strive to keep the model language simple, to enable
us to study the processes of labeling and unlabeling vis-a-vis different lan-
guage constructs, it is worthwhile to mention a few possible avenues for
extensions. First, consider the following example, where the library function
f calls the library function min. Instead of forcing the model of f to repeat
the model of min it would be possible to add some form of model application,
where the model of min is instantiated with the labels from f.

f i ar az — min a1 a2
fxy=minxy

This allows for a systematic construction of more complex models (noth-
ing prevents us from introducing models that don’t correspond to library
functions).

Further, since the models are evaluated at runtime, they could be ex-
tended to have access to the values of the parameters in addition to the
labels. This would allow for dependent models, where different labels are
computed depending on the value of the parameters. Consider, for instance,
the following library function.

firar as = z?op Lo o
f xy=1if x then y else 0

In this example the model uses the value of the parameter (stored in the
model state under the parameter name) in order to select between two labels.
In a language more complex than C, those additions provide important
expressiveness to the model language.

3 Lists £

Structured data pose interesting challenges in relation to marshaling between
the monitored and unmonitored semantics. While the unlabel and label
processes must follow the structure of the values passed, structured data
offer more freedom in the design of the unlabel and label models. In addition,
fundamental questions pertaining to the time and extent of labeling and
unlabeling arise. When passing a labeled list to the library, should the list

A PRINCIPLED APPROACH TO TRACKING INFORMATION FLOW
34 IN THE PRESENCE OF LIBRARIES

be marshaled in a strict or a lazy fashion? For library functions that only
use parts of the passed data, strict marshaling can be both expensive and
potentially imprecise, in particular when large object graphs are passed to or
from the library (cf., getting an object from the DOM, where strict marshaling
would be prohibitively expensive).

For this reason, we explore the notion of lazy marshaling. The idea is
to marshal only when the opposite program part actually makes use of the
data that has been passed. Unlabeling (or labeling in the dual setting) occurs
only when the library (dually, program) actually uses the data, and only the
part of the data that was used is unlabeled. This requires us to be able to pass
data in such a manner that we can trap any interaction and unlabel or relabel
on the fly. To this end, we opt for a solution that is inspired by the Proxy
objects of JavaScript [22] but cast in terms of lists, and use a representation
of lists that allow for proxying. The approach is general in the sense that it
scales well to other types of structural data and that it can be implemented in
different ways, e.g., proxies and accessor methods, both available in a range
of languages, including JavaScript, Python and Objective C. One limitation
of the approach is that some form of programming language support, that
allows for trapping the read and write interaction of the library with given
objects, is needed. If such support is not available, one can always resort to
strict marshaling, which corresponds to a relatively immediate lifting of the
label and unlabel functions of the core language to structured data. Most of
the ideas presented in this paper should carry over to strict marshaling with
little effort at the cost of efficiency and precision of the marshaling.

3.1 Syntax

From a syntactic standpoint the extension of C to support lists is small; the
empty list, [], the cons operation, :, and operations for getting the head,
head, and tail, tail, of lists are added.

ex= n|x|ife thenegyelsees|letx=e1ines| fe|fupe]e Pes|
[]|e:e| heade] tail e

3.2 Semantics

In JavaScript, a Proxy is an object that forwards all interactions to a set of
user defined functions, provided at the creation time of the Proxy. Once
the Proxy object has been created, it can be interacted with like a normal
object. Thus, e.g., by defining a function corresponding to get, all property
reads of the proxy object can be trapped and modified — the return value of
the function will be the result of the read. The fundamental property that

3 LISTS L 35

makes Proxies suitable for lazy marshaling is that they allow the functions
to modify all possible interactions with the object.

Unlike the strict marshaling of the core language, where the model state
is computed before entering the library, the introduction of lazy marshaling
requires the model state to be updated during the execution of the library
function (in case the function interacts with the passed data). In a practical
setting, the monitored program and the unmonitored library would share
memory (they are different parts of the same program). This means that it
is easy to maintain the model state in the presence of lazy marshaling. In
an operational semantics, mutable state is modeled by threading the state
through the evaluation.

Values We model proxyable lists as pairs of functions (H,T) and (H,T)
respectively.

bu=n | (H,T)|[] vu=n|(HT)|[]

The idea is that H and H return the head of the list, and 7" and T return the
tail (which can be the empty list). This representation allows for an elegant
lazy marshaling of lists, when they are passed between the program and
the library, by wrapping the head and tail functions. The actual marshaling
takes place only when the function is called, i.e., when the respective value
is read.

Stateful marshaling In order to support unlabeling and labeling of lists
we must extend the unlabel and label models. Since we are mainly interested
in the stateful marshaling, we use a simple extension that differentiates
between the labels of the values and the label of the structure of the lists [18].
See Section 3.5 for a discussion on possible extensions.

pu=allela yu=rl[v]k

The intuition for unlabel models is that, whenever a value is read from the
list, the model state is updated accordingly. This means that the model state
can be changed during the execution of the library, which must be reflected
in the unlabeled semantics. The same is not true for the labeled semantics;
any value passed from the unlabeled world will be labeled with respect to
the model state at the time of return, even if the labeling is lazy. This leads
to a seeming asymmetry in the semantics reflected by the definition of the
head and tail functions for lists.

i)
T ()

>
N
l
o™
s

—
—

<>

A PRINCIPLED APPROACH TO TRACKING INFORMATION FLOW
36 IN THE PRESENCE OF LIBRARIES

The way to interpret this asymmetry is not that the unlabeled semantics
has to be changed to enable marshaling — as described above, mutable
state is modeled by threading the state through the computation. Rather, the
asymmetry arises from the fact that the model state is only important for the
evaluation of library functions called from the monitored semantics.

With respect to the unlabel and label operations, they must be updated
to handle the extended unlabel and label models.

[4ol (1.~) A
(H.T) | [¢]e = ((unlabel(H,), unlabel(7,[¢]a)). [€])

The unlabeling of lists updates the structure label and wraps the head and
tail of the list (if present) with unlabeling wrappers, that unlabel with respect
to the unlabel model. On access the wrapper receives the model state (of
the current call to the library), after which it uses H to get the labeled value,
and ¢ to unlabel. The unlabeled value is returned together with an updated
model state, where £ L ¢’ is defined as the union of £ and ¢’ under least
upper bound of shared mappings. The wrapper for the tail of the list works
analogously, but with respect to the full unlabel model of the list [¢]q.

unlabel(f[,go) =X . (Eud,v), urllelbel(j“7 [pla) =A. (EL &, v),
whereH() =?0and? | ¢ = (U,f’) whereT(=9Pand D | [(p]a = (7},5/)

The labeling of lists is similar, with the difference that the labeling is done
with respect to the final model state. Once evaluation has returned, nothing
can change the model state corresponding to the call.

[11e [v]x = [0
(H, T) TE [7]/{ (label(H,g,v),label(T,g, [ly]n))[[ﬁ]]g

The wrappers are given the model state, £, and the label model, . On access
the wrapper uses H to get the unlabeled value, v. Notice, how this may
actually extend the model state to &’ (it could be the case that H is an unlabel
wrapper) and that ¢’ is used together with v to compute a label for v. This
new model state does not have to be propagated, though. If the value was
used by the unlabeled world in the creation of the tail of the list its label is
already included in &.

The relabeling of the tail of the list works analogously, but with respect to
the label model of the list [v].. Any extension of the model state is passed
to the wrapping of the tail.

label(H,€,7) = ()., label(T, €, [7],) = A() . &
where H (&) = (£, v) where T'(€) = (&,)
and’UTE/’y=ﬁ andngz[] =

3 LISTS L 37

8|=€1—>ﬁ1 S)=€2—>1A)2
empty cons —
[- []L) 'I €1 . ey — ICOI’IS<@1,QA}2)L
bbe— (HT) H()=10 bee— (HT) T()=1%
head — tail —
d = head e > ¥ 0 = taile > o
(

Alf] = (=, ef) Alf] = (¢.7) Se—d
@l,gO:('U,f) [iL"—>’U])=<§7€f>\N\/><§’7’U> UT&”V:@

Sk fupe— 0

Figure 1.3: Labeled semantics of lists

lib

Unlabeled and labeled semantics The additions to the labeled semantics,
found in Figure 1.3, are straightforward given the above modeling. Let
lcons(d1,92) = (A(). 91, A(). ©2) be the creation of labeled cons cells?, used in
the evaluation of the : operator (cons). The evaluation of head and tail (head,
and tail) uses the head and the tail function respectively to get the value.
Notice, how the model state may be modified during the execution of the
library, and how the return value is labeled in the modified state (1ib).

With respect to the unlabeled semantic, the entire semantics must be
lifted to thread the model state, § = (&1, €) v (&2, v). This modification is
straightforward and can be found, along with the additions to the unlabeled
semantics, in Figure 1.4. Let ucons(v1,v2) = (A§ . (§,v1), A§ . (€, v2)) be the
creation of unlabeled cons cells, used in the evaluation of the : operator
(cons). The evaluation of head and tail (head, and tail) uses the head and tail
function respectively to get the value. Notice that the model state is threaded
in this case — this is what allows for the lazy unlabeling. In case the head or
tail function is an unlabel wrapper, the state will be updated.

3.3 Correctness

Definition 2 (Correctness of the library models). A library model correctly
models a library if every function, f, in the library, A[f] = (x,e), respects the
associated function model, A[f] = (¢,7), if present. Notice that, even though
the final model states may differ (due to different interactions with marshaled
labeled values in the two runs), a correct library model must ensure that the label is
independent on the differences and that the values are low-equivalent with respect
to the labeling.

2The term originates from Lisp. In addition, cons is used as the name for the list-forming
operator in many functional languages.

A PRINCIPLED APPROACH TO TRACKING INFORMATION FLOW
38 IN THE PRESENCE OF LIBRARIES

S[z] = v
S Emy wo Emy S LG xy o (& 0y

§ = &r,e1) o (2,v1) O (62, e2) v (€3, 02)
6 = (&1,e1 Dea) v (€3,01 D v2)

b ELse) > (&v) v#E0D S e2) o (63,0)
0 k=&, if e1 then eq else e3) v (E3,v)

0=, e1) > (&) v=0 =&, e3) > (E3,0)
0 =&, if ey then eq else e3) v~ (E3,v)
6 = (&1, e1) v (€2,01)
O[z — v1] |= (€2, €2) v (3, 02)
0 =&, let © = ey in eg) v (€3,02)
Alf] = (z.ep) 0 (&1, €) v (&,v)
[w = U]): <£2,€f> A <£37U>
0 =&, f ey o (&3,0)

SEGLD > &ID
6 = (&1, e1) v (€2,01)
0 (€2, e2) v (€3,02)
1)): <§1,€1 : €2> > <§3,UCOHS(U1,1)2)>

6 = (&1,e) v (&o, (H,T)) 6 = (&1,e) v (&2, (H,T))
H(&) = (€3,0) T(&2) = (&3,v)

head tail

6 = (&1, head e) v (€3,0) 6 | (&, tail e) > (€3,0)

Figure 1.4: Unlabeled semantics of lists

int

op

ify

ifa

let

empty

cons

VP ALl = (.7) A AL = (. €)
AN~ AD | p=(0E)AD | = &)
A 0] b (61,6 v 62,3 A [] b= 61 o (60> =
vl =0 Tg y

As is standard we prove noninterference as the preservation of a low-
equivalence relation under execution, extended from Section 2.3 with lists
as follows.

H)~H'() T()~T)
[1F=~[1* vit =~ vgf (H,T)" ~ (1, 1")*

3 LISTS L 39

Under the assumption that Definition 2 holds, we can prove noninterference
for labeled execution.

Theorem 2 (Noninterference for labeled execution).

b~ Adle—indEe—t =b~0

3.4 Examples

We present a selection of examples to illustrate different aspects of our
models. Consider first the length function, that recursively computes the
length of the given list.

length :: [a1 Jay — a2
length 1 = if 1 == [] then 0 else 1 + length (tail 1)

The function traverses the list until the empty list is found without looking
at the elements. During this traversal, the security labels corresponding to
the cons cells are accumulated into the label variable «», which is used to
label the result. This corresponds precisely to the structure security label of
lists in [18]. It is, thus, possible to have functions that are dependent on the
structure of a list, but not the content.

The other way, however, is not possible. Getting an element from a list
always reveals information about the structure of the list. Thus, the sum
function, which sums the element of the list must also take the labels of the
cons cells into account.

sum i [a1 Jay — o1 U2
sum 1L = if 1 == [] then 0 else head 1 + sum (tail 1)

Consider the function replicate, that creates a list by replicating a given
element, =, n times. The length of the list is given by the label of n and the
label of the elements by the label of z. Notice the limitation in the current
label models. By giving the second argument the unlabel model a5, we force
replicate to take integers — lists cannot be unlabeled by cs. In such cases,
polymorphic models are needed, see below in Section 3.5.

replicate :: a1 a2 — [a2 |a;

replicate n x = if n == 0 then []
else x : replicate (n - 1) x

Related to both sum and replicate consider the function take, that takes
an integer, n, and a list, /, and returns the n first elements of I. Clearly, the
length of the list is dependent on both the label of n, o1, and the structure of
the list a3. Notice, that the label of the structure of the list is accumulated
into a3 as the function traverses the list. This means that, given a list, where
the first £ cons cells are public, followed by some number of secret cons cells,

A PRINCIPLED APPROACH TO TRACKING INFORMATION FLOW
40 IN THE PRESENCE OF LIBRARIES

take will yield lists with public structure, as long as no more than & elements
are taken. Once more than k elements are taken, however, the labels of all
cons cells will be secret. Unfortunately, this is the same for the labels of the
values, which are all joined into «, see Section 3.5.

take :: a1 [@2 Jlag — [@2 lajuas
take n 1 = if 1 == [] || n == 0 then []
else head 1 : take (n - 1) (tail 1)

Finally, consider the function takeUntilZero, that takes an unknown
number of elements from the list. In this function, the length of the list is
dependent on the labels of the values of the list, as well as the labels of the
traversed cons cells. As before, only the labels of the cons cells that actually
take part in the computation are part of the accumulated label for ;.

takeUntilZero :: [@1 Jan — [@1 Jajuas
takeUntilZero 1 = if 1 == [] || head 1 == 0 then []
else head 1 : takeUntilZero (tail 1)

3.5 A note on the policy language

With respect to the policy language, there are a number of possible paths
to explore. First, consider a form of polymorphic models, where we add
variables, z, to the policy language. Unlike «, the intention is that = can
map to structured labels (potentially in combination with the values, see
Section 2.5). This would enable the following.

replicate :: a2 — [z o
replicate n x = if n == 0 then []
else x : replicate (n - 1) x

where x would allow any type of value to be repeated. It is also possible to
envision other operations on such variables, such as Qz, the computation of
the least upper bound of the labels reachable from z.

Additionally, it is natural to extend the model language with some form
of pattern matching on lists, as follows.

for (o[a3 Jay) >3 uag
f ls = sum (drop 2 1s)

In this case, the first two elements are dropped before the remainder is
summed together. An interesting avenue of research is to explore this in com-
bination with dependent models and richer models for building structured
data.

4 HIGHER-ORDER FUNCTIONS F 41

4 Higher-order functions 7

After having investigated how to pass structured and unstructured data
between the program and the library, we turn the attention to the passing of
computations, in terms of higher-order functions. The passing of functions
between programs and libraries is commonplace, used in the presence of,
e.g., asynchronous operations. Examples of this are callbacks, where functions
are passed to the library, allowing it to inform the program of certain events,
and promises [21], that rely on the ability to pass functions in both directions.

4.1 Syntax

To investigate higher-order functions, we extend the core language with a
function expression, fun & = e and change function calls to a computed
call target. The introduction of higher-order functions subsumes top-level
function definitions. Instead, we allow for top-level let declarations, let x = e,
and corresponding model declarations, x :: .

ex= n|xl|ife thenegelsees|letx=ejines| fe|fure|er ey
ee|funx=e

d:= letx=ce
mu= x:u7y

4.2 Semantics

Fundamentally, we use the same approach as with lists and represent clo-
sures as functions instead of structured values. This allows us to marshal
functions from the labeled world to the unlabeled world and back without
the need to distinguish between the origin of the values in the respective
semantics. Intuitively, this corresponds to using functions as the calling
convention and mimics what is actually in a practical implementation®.

Following the development of Section 3, we add functional closures to
the values as follows.

bu=nt | Ff vu=n|F

where labeled closures, F, take sequences of labeled values to labeled values
and unlabeled closures, F, also thread a model state

Fio—i Fi(gv) - (60)

3In a practical implementation, the program and the library would use the calling conven-
tion of the computer — regardless of the implementation language of the two.

A PRINCIPLED APPROACH TO TRACKING INFORMATION FLOW
42 IN THE PRESENCE OF LIBRARIES

With respect to the asymmetry of the semantics, the intuition is the same
as before: the model state resides in shared memory, but, since the labeled
semantics never modifies the model state we do not need to thread the
model state through the labeled semantics.

Stateful marshaling Conceptually, any function defined in the library that
can be called from the monitored program, whether passed as a closure or
called, must be given a label model, that defines how to label the closure as
a value, how to unlabel the parameters and label the result (c.f., the function
models in Section 2). The question is, how to unlabel a closure, when passing
it from the monitored program to the library. Intuitively, the unlabel model
should be the dual of the label model, i.e., unlabel the closure as a value, label
the parameters and unlabel the result. The problem is, that both unlabeling
and labeling is performed in relation to a model state, which cannot be
assumed to be the same as when the closure was passed as a parameter (it
could be an extension — the passed closure could be called from an inner
function). For this reason, we cannot tie an unlabel model to the closure at
the point of unlabeling; it must be provided at the point of call. To be able
to connect closures to calls, closures are tagged with a provided abstract
identifier, 7, when unlabeled. This abstract identifier is used in the label
models for library functions to connect called closures with call models that
express how to label the parameters and unlabel the result in the model state
of the caller.

pu=aln® vi=kRl(e—=70)" (u=my =0

Unlabel models for labeled closures, 7¢, provide both abstract identifiers, 7,
and label variables, «, while the label models of unlabeled closures, (¢ —
~,¢)", contain how to label the closure as a value, x, how to unlabel the
parameters, ¢, how to label the result, v, and how to label calls to callbacks,
¢. These call models, ¢, tie abstract identifiers, 7, to call models, i.e., how
to label the parameters, v, and how to unlabel the result, ¢. Linked by the
abstract identifier, the unlabel model for labeled closures together with the
call models can be seen as duals to the label models for unlabeled closures.

Unlabeling of labeled closures is similar to unlabeling of values and
lists, and places an unlabel wrapper around the labeled closure. The unlabel
wrapper is, additionally, given the abstract identifier, 7, used to tie future
calls to the corresponding call models.

ot | o= (v, &[a— 1)) EF* | 7 = (unlabel(F*, 1), [a = £])

The unlabel wrapper becomes an unlabeled closure, that takes a model state,
¢, and a sequence of unlabeled values, v, and finds the call model v — ¢

4 HIGHER-ORDER FUNCTIONS F 43

bbe—F ke—d
v = lclos(d, x, €) F(®) =19

fun— app —
S funx =e— vt SfEee—df

Solfl=F &Ifl = (=70 Flg (@— 7,8 =F*
S b= fup — F*

Figure 1.5: Labeled semantics for higher-order functions

lib

corresponding to the abstract identifier, 7. Thereafter, -y is used to label the
values, which are passed to the labeled closure, F, to get a labeled value, ©.
The labeled value is unlabeled using ¢, which produces an unlabeled value
and an update to the model state, ’. The result of the call to the wrapper is
an updated model state and the unlabeled value. Notice how the label of the
closure / is used to raise the returned value before the unlabeling.

unlabel (F*, 7) = A(¢,v) . (11¢/,v),
where {[1] = v — pand F(v T¢ v¥) = ¥ and 9 Lo=(2¢)

Labeling of unlabeled closures places a label wrapper around the closure.
The label wrapper is additionally given the model state, £, how to unlabel
the parameters, ¢, how to label return value, v, and the call models, ¢.

v Tg K = U[[K]]5 F Tf (‘P -7, C)H = label(Fa§7 Y —7, C)HHH{

The label wrapper becomes a labeled closure, that takes a sequence of labeled
values, 9, unlabels the value producing a sequence of values, v, and an
update to the model state, £’. The updated model state is extended with the
call models of the function (replacing the previously defined), producing a
new model state &, by threading

(7K — ¢l =E&r— (k-)]

through the sequence ¢. The produced model state is used in the execution
of the unlabeled closure, F', together with the unlabeled values producing
an unlabeled value, v, and the final model state, £3. The result is the labeled
value 9, created by labeling v with respect to y and the final model state.

label(F, &, ¢ — v,¢) = b . 0,
where ¥ i« w = (’Uagl) and [[C]]guf' = 52
and F(fg,v) = (53,1}) and v T§3 v =)

A PRINCIPLED APPROACH TO TRACKING INFORMATION FLOW
44 IN THE PRESENCE OF LIBRARIES
v = uclos(9d, z, €)
0= (& fun =€) v~ (& v)
O (&,e) v (&, F) 0 =(&,e) wo (63,v)
. F(&.v) = &0 v)
6 =& ee) oGy,

Figure 1.6: Unlabeled semantics for higher-order functions

fun

Labeled semantics The labeled semantics is mostly unaffected by the ex-
tension, apart from the rule for higher-order functions (fun), the rule for
function call (app) and the rule for library call (lib). The modified rules
are found in Figure 1.5 and make use of closure creation, Iclos, defined as
follows.

Iclos(8, x,€) = A® . ©, where §[a — D] = e — ©

In the semantics dy, and &, are created by evaluating the top levels of
the labeled and the unlabeled world, respectively. This creates all top level
closures used in function and library calls. Similarly, & is created from the
model definitions of the library, and is used as the initial model state.

Function call (app) evaluates the function expression to a closure and
the parameters to a sequence of labeled values, ©. The closure is called by
supplying the labeled values and the result is returned, but with the label
raised to the label of the closure. The library call has been replaced with a
rule that lifts an unlabeled closure to the labeled world (1ib). This is done
by looking up the unlabeled closure in the initial environment of the library
do, and the corresponding function model in the initial model state . The
labeled (wrapped) closure is then returned as the result. Thus, in line with
the intuition of using functions as the calling convention, functions in the
program and in the library are translated to functions that are called in the
same manner in the function call rule.

Unlabeled semantics In the unlabeled semantics, a rule for higher-order
functions (fun) has been added and the rule for function application (app) has
been changed. The modified rules are found in Figure 1.6 and are analogous
with the changes made to the labeled semantics, including the use of closure
creation defined as follows.

uclos(d, z,e) = A(&1,v) . (&2, v), where §[x — v] = (&1,) — (&2, 0)

4 HIGHER-ORDER FUNCTIONS F 45

4.3 Correctness

We prove correctness under the assumption that the library model correctly
models the library.

Definition 3 (Correctness of the library models). A library model correctly
models a library if every closure, f, in the library, 5[f] = F, respects the associated
function model, & [f] = (¢ — 7,)", if present.

Vi &lfl = (@ —7C)" Andolf] = F
Ao AD o= (v,6) A0 | o= (&) A<, =E&n
F(£27’U) = (637’0) A F(£2’v/) = (€é7vl)/\ = T€3 v = v’ Téé v

As is standard we prove noninterference as the preservation of a low-
equivalence relation under execution, extended from Section 2.3 with higher-
order functions as follows.

Vo, 0 . b~ = F(d) ~ F' (1)

Under Definition 3 holds, we can prove noninterference for labeled
execution.

Theorem 3 (Noninterference for labeled execution).

b~ Adle—tnd et =b~0

4.4 Examples

To illustrate models for higher-order functions we consider three examples.
In the examples, the library top-level contains a let with a higher-order
function, which is paired with a function model. Before the program is run
the top-level let bindings in the library and the unmonitored program (in
that order) is evaluated to values. As illustrated in the second example,
this means that execution no longer needs to start in a predefined function.
Instead, computation can be started from any of the let bindings that do not
produce closures.

The first example takes a callback and immediately calls it with a constant,
and the associated function model expresses that the function takes a closure,
which will be unlabeled as «; and associated with the abstract name =
(nothing prevents us from using the same name as the parameter). Further,
the closure is called with a public parameter, and the result will be unlabeled
as ap, which is also the label of the result of the function.

A PRINCIPLED APPROACH TO TRACKING INFORMATION FLOW
46 IN THE PRESENCE OF LIBRARIES

foi (X1 o> ag, x L -> ag) L
let f = fun x => x 42

When calling the closure, the call model will be looked up and used to label
the parameters — in this case giving 42 labeled with L. The result of the
call will be unlabeled as «, before being labeled by as and returned by the
function.

The second example illustrates why callbacks cannot be associated with
an unlabel model on the point of unlabeling.

let cb = fun x => x + 1
let main = let g = f;;, cb in g 10

- library part
fir (x* > (a2 -> a3, X a2 -> a3
let f = fun x = funy => x vy

)L)L

When the callback cb is passed to f it is not called, rather a closure is returned
which takes another parameter that is unlabeled into «, which in turn is
used as the parameter to the callback. Thus, in order to correctly label the
value of the parameter to the callback, a2 must be in the model state. This
is true for the second call ¢ 10 but not for the first f;;;, cb in the monitored
program.
Finally, consider an example with a conditional callback.
fir (x% o> (ag -> as LAz, X ag -> ag)L)L

let f = fun x => fun y => if y then x 42 else 42

The example illustrates the situation, where the callback may or may not be
called depending on other values inspired by the frequent use of coercions in
JavaScript libraries. This means that in some executions the variable a; may
not be set. To handle this kind of situations it suffices that [[a]|, = L, when
&[a] is undefined. In addition, this interpretation allows for a limited form
of dependent models.

5 Related work

There has been a substantial body of work in the area of dynamic information
flow control in the past decade, to a large extent motivated by the desire to
provide security and privacy for JavaScript web applications. There are two
big lines of work. First, execution monitors [15, 1, 18, 17, 3] attach additional
metadata (for instance, a security level) and propagate that metadata during
the execution of a program. Second, multi-execution based approaches [6,
19, 27] essentially execute a program multiple times, and make sure that
the execution that performs outputs at a certain security level has only
seen information less than or equal to that security level. The multiple-facets

5 RELATED WORK 47

approach [2] is an optimized implementation of multi-execution, but it is less
transparent. Bielova and Rezk [4] give a detailed survey and comparison
of all kinds of dynamic information flow mechanisms, and we refer the
reader to that paper for a detailed discussion. Both lines of work on dynamic
information flow control (execution monitoring and multi-execution) have
been applied to JavaScript in the browser [13, 16], and both have dealt
with the problem of interfacing with libraries in a relatively ad-hoc way —
essentially by manual programming of models of the library functions, or by
treating API calls as I/O operations [14]. Rajani et al. [28] propose detailed
and rigorous formal models of the DOM and event-handling parts of the
browser, and find several potential information leaks. The work in this paper
is a first step to a more principled approach of interfacing with such libraries
that avoids the labor-intensive manual construction of such models (at the
cost of potentially losing some precision).

The problem of interfacing with libraries where no dynamic checking
of information flow control is possible, is related to the problem of check-
ing contracts at the boundary between statically type-checked code and
dynamically type-checked code. The problem of checking such contracts has
been studied extensively in higher-order programming languages. Findler
and Felleisen pioneered this line of work and proposed higher-order con-
tracts [11]. The main challenge addressed is that of function values passed
over the boundary. Compliance of such function values with their specified
contract is generally undecidable. But it can be handled by wrapping the
function with a wrapper that will check the contract of the function value
at the point where the function is called. This is similar to how we handle
function values in this paper, and an interesting question for future work is
whether we can avoid the use of abstract identifiers for closures by injecting
the appropriate labeling /unlabeling functionality using proxies only guided
by how this is done in higher-order contract checking [8]. One concern that
has received extensive attention is the proper assignment of blame once a
contract violation is detected [12, 7]. Assigning blame for information flow
violations has been investigated by King et al. [20] in the setting of static
information flow checking. Our work could be seen as an application of
the idea of dynamic higher-order contract checking to information flow
contracts, something that to the best of our knowledge has not yet been
considered before. We do not consider the issue of assigning blame: if the
library does not comply with the specified contract, this is not detected at
run-time.

Gradual typing [31, 32] is an approach to support the evolution of dy-
namically typed code to statically typed code, and it shares with our work
the challenge of interfacing soundly between the dynamically checked part

A PRINCIPLED APPROACH TO TRACKING INFORMATION FLOW
48 IN THE PRESENCE OF LIBRARIES

of the program and the statically checked part that no longer propagates all
run-time type information. It has also been applied in the setting of security
type systems [9, 10], but it fundamentally differs in objective from our work.
With gradual typing, the idea is to start from a program that is checked
dynamically, and to gradually grow the parts that are statically checked.
Our objective is to support interfacing with parts of the program for which
dynamic checking is infeasible, either because the part is written in another
language like C, or because dynamic checking would be too expensive to
start with.

6 Conclusion

In this paper we have explored a method, stateful marshaling, that enables
an information flow monitored program to call unmonitored libraries. The
approach relies on storing the labels in a model state in accordance with an
unlabel model before calling the library, and labeling the returned result by
interpreting a label model in that model state.

Additionally, we have investigated lazy marshaling of structured data in
terms of lists. The idea is similar to the concept of proxies and works by
semantically representing lists as pairs of functions, that can be wrapped
without recursively marshaling the entire list. When interacted with, the
wrappers unlabel one step and return unlabeled primitive values or new
lazy wrappers.

Finally, using functions to represent closures, we have shown how higher-
order functions can be allowed to be passed in both directions. The approach
relies on the concept of abstract identifiers that tie labeled closures, passed
from the monitored program to the library, to call models, which describe
how to label the parameters and unlabel the result with respect to the model
state of the caller.

Future work We have preliminary results that show that lazy marshal-
ing in combination with abstract identifiers is able to successfully handle
references and the challenging combination of references and higher-order
functions. Further, as discussed above, we aim to explore richer model
languages, including but not limited to dependent models and model poly-
morphism. Finally, experiments with integrating our approach into JSFlow
are subject to our current and future work.

Acknowledgments This work was partly funded by the European Com-
munity under the ProSecuToR project and the Swedish research agency
VR.

7 BIBLIOGRAPHY 49

7 Bibliography

[1] T.H. Austin and C. Flanagan. Permissive Dynamic Information Flow
Analysis. In PLAS, 2010.

[2] T.H. Austin and C. Flanagan. Multiple Facets for Dynamic Information
Flow. In POPL, 2012.

[3] A. Bichhawat, V. Rajani, D. Garg, and C. Hammer. Information flow
control in webkit’s javascript bytecode. In POST, 2014.

[4] N. Bielova and T. Rezk. A taxonomy of information flow monitors. In
POST, 2016.

[5] A.Birgisson, A. Russo, and A. Sabelfeld. Unifying facets of information
integrity. In ICISS, 2010.

[6] D. Devriese and F. Piessens. Noninterference Through Secure Multi-
Execution. In S&P, 2010.

[7] C.Dimoulas, R. B. Findler, C. Flanagan, and M. Felleisen. Correct blame
for contracts: No more scapegoating. In POPL, 2011.

[8] C.Dimoulas, M. S. New, R. B. Findler, and M. Felleisen. Oh Lord, please
don’t let contracts be misunderstood (functional pearl). In ICFP, 2016.

[9] T.Disney and C. Flanagan. Gradual information flow typing. In STOP,
2011.

[10] L. Fennell and P. Thiemann. Gradual security typing with references.
In CSF, 2013.

[11] R. B. Findler and M. Felleisen. Contracts for higher-order functions. In
ICFP, 2002.

[12] M. Greenberg, B. C. Pierce, and S. Weirich. Contracts made manifest.
In POPL, 2010.

[13] W. D. Groef, D. Devriese, N. Nikiforakis, and F. Piessens. FlowFox: a
Web Browser with Flexible and Precise Information Flow Control. In
CCS, 2012.

[14] W. D. Groef, D. Devriese, N. Nikiforakis, and F. Piessens. Secure multi-
execution of web scripts: Theory and practice. Journal of Computer
Security, 2014.

[15] G. L. Guernic. Confidentiality Enforcement Using Dynamic Information
Flow Analyses. PhD thesis, Kansas State University, 2007.

A PRINCIPLED APPROACH TO TRACKING INFORMATION FLOW
50 IN THE PRESENCE OF LIBRARIES

[16] D. Hedin, L. Bello, and A. Sabelfeld. Information-flow security for
JavaScript and its APIs. Journal of Computer Security, 2015.

[17] D. Hedin, A. Birgisson, L. Bello, and A. Sabelfeld. JSFlow: Tracking
Information Flow in JavaScript and its APIs. In SAC, 2014.

[18] D. Hedin and A. Sabelfeld. Information-Flow Security for a Core of
JavaScript. In CSF, 2012.

[19] V. Kashyap, B. Wiedermann, and B. Hardekopf. Timing- and
Termination-Sensitive Secure Information Flow: Exploring a New Ap-
proach. In S&P, 2011.

[20] D. King, T. Jaeger, S. Jha, and S. A. Seshia. Effective blame for
information-flow violations. In FSE, 2008.

[21] B. Liskov and L. Shrira. Promises: Linguistic Support for Efficient
Asynchronous Procedure Calls in Distributed Systems. In PLDI, 1988.

[22] Mozilla Developer Network. Proxy. https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Global_Objects/Proxy. accessed:
Oct 2016.

[23] Mozilla Developer Network. Web APIs. https://
developer.mozilla.org/en-US/docs/Web/API. accessed: Oct 2016.

[24] Node.js v6.9.1 Documentation. https://nodejs.org/dist/latest-v6.x/
docs/api/. accessed: Oct 2016.

[25] Node Package Manager. https://www.npmjs.com/. accessed: Oct 2016.

[26] Oracle. Java Native Interface. https://docs.oracle.com/javase/8/docs/
technotes/guides/jni/. accessed: Oct 2016.

[27] W. Rafnsson and A. Sabelfeld. Secure Multi-Execution: Fine-grained,
Declassification-aware, and Transparent. In CSF, 2013.

[28] V. Rajani, A. Bichhawat, D. Garg, and C. Hammer. Information Flow
Control for Event Handling and the DOM in Web Browsers. In CSF,
2015.

[29] N. Rajlich. node-ffi. https://www.npmjs.com/package/node- ffi. accessed:
Oct 2016.

[30] A.Sabelfeld and A. C. Myers. Language-based information-flow secu-
rity. IEEE |. Selected Areas in Communications, 21(1):5-19, Jan. 2003.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/API
https://developer.mozilla.org/en-US/docs/Web/API
https://nodejs.org/dist/latest-v6.x/docs/api/
https://nodejs.org/dist/latest-v6.x/docs/api/
https://www.npmjs.com/
https://docs.oracle.com/javase/8/docs/technotes/guides/jni/
https://docs.oracle.com/javase/8/docs/technotes/guides/jni/
https://www.npmjs.com/package/node-ffi

A SOUNDNESS FOR C 51

[31] J. G. Siek and W. Taha. Gradual Typing for Functional Languages. In
SFP, 2006.

[32] J. G. Siek and W. Taha. Gradual Typing for Objects. In ECOOP, 2007.

[33] H. wiki. Foreign Function Interface. https://wiki.haskell.org/
Foreign_Function_Interface. accessed: Oct 2016.

A Soundness for C
Theorem 1 (Noninterference for labeled execution).
b= Adle—sindEe—nt =00

The ~ relation is defined to be

S

dom(S)
Yz € dom

(0
n-~n ny' ~ny 5

(

Omg,

om)A
) - [] 0[]

12

0
S

Proof. By induction on the height, h, of the derivation tree § = ¢ — 7 taking
the form of a case analysis on the last rule applied.

e case 7: Based on the rule int, we have to show:
6~ =nl~nl

The result follows immediately by the definition of ~.

¢ case x: Based on the rule var, we have to show:

N
>~ v

[S33

b~ A 3[]—UA5’[]:{/:

The result follows immediately by the definition of § ~ ¢

e case if ey then es else e3: Conditionals have two rules; if-1 and if-2.
We must show

6~

!

>

A O E=if er then eg else e3 — D
A 0 = if ey then es else e — 0’
= ~ ¢

<>

Have 0) § ~ &,

1) 5 = if eq then eq else e3 — 0,

https://wiki.haskell.org/Foreign_Function_Interface
https://wiki.haskell.org/Foreign_Function_Interface

52

A PRINCIPLED APPROACH TO TRACKING INFORMATION FLOW
IN THE PRESENCE OF LIBRARIES

2) Y = if e; then eq else e3 — 7.
Show o ~ ¢'.

Have 4) 6 | e; — v from 1.
Have 5) &' = e; — v'* from 2.
Have 6) v ~ v* from IH, 0, 1, 2.
Have, 7) £ = ¢’ by 6.

We get three cases based on 6, 7

—casel/=/{ =Landv =17 =1.

Have 8) 6 = ey — 0

Have 9) &' ey — o/

The result follows from IH, 0, 8, 9.
—casel/=/(=Landv =10 =0.

Have 8) 0 |= e5 — ©

Have 9) ¢’ Ees— 0

The result follows from IH, 0, 8, 9.
—casel=(=H

Have 8) o = o
Have 9) ¢/ = o'H

The result follows trivially by definition of ~.

case let x = e1 in es: Based on the rule let, we have to show:
§5~6 A (§)=el—>f)1/\5A[acl—>f)1] ey — 0y

A O Eer o0 Az U] Eex —)
= Og ~)

Have 0) §~¢,

16 Eel — 0,

2) 6z > 1] = ey — 1o,

3) & Ee — 0,

4) §'[x —)] = eg — 0.

Show vy ~ .

Have 5) 0; ~ ¢} fromIH, 0,1, 3.

Have 6) §[z — 0] ~ §'[z — ©/] from Lemma 1.

Result follows from IH, 6, 2, 4.

A SOUNDNESS FOR C 53

¢ case f e: Based on the rule app, we have to show:

5~ 8 AA[f] = (@,ep)

Have 6) © ~ ¢’ from consecutively IH, 0, 2, 4.

Have 7) [x —] ~ [® — 9] from Lemma 1 (having 6; = [],5, = []),

Result follows from IH, 7, 3, 5.

e case fj, e: Based on the rule lib, we have to show:

f1= (@.ep) AL = (@7 A e — 0
¢ = (v,
rz—ov]lEewovAvley=0
e AD | = (V)
z—vV]Ee ot AV ey =0

5~ ¢

— onrT & D
«—

>
1
=

1) A[f] = (z.¢),

2) ALf] = (#:7),

3) e — b,
4)’0,[(,0—('0,)/

5) [>] = ef v,
G)UTf’Y—@/

N bEe—d,

8) 0" | ¢ = (v',§),

54

A PRINCIPLED APPROACH TO TRACKING INFORMATION FLOW
IN THE PRESENCE OF LIBRARIES

9) [@ '] |- ef o,

10) v tey =7

Show ¢ ~ ¢'.

Have 11) ¢ ~ %' from IH, 0, 3, 7.

Result follows from Definition 1 together with 11.

case e¢; @ es: Based on the rule op, we have to show:

b= A bbEer >0 Ad ey — 0k
~ / ~ /
Ve — vfl N —>’U/2£2
= (v @v2>llu€2 ~ (vll @U/Z)éllué’z

Have 0) § ~ &,
1) 5 Ee — vfl,
2) 6 ey — 02,
3) 5 e — v'lell,
4) 8 ey — U/;;.

Show (vy @ v)1=2 ~ (v} @ vh)h=ta,

Have 5) v7' ~ villl from IH, 0, 1, 3.

Have 7) ¢; = ¢} from definition of ~,5.

) v
Have 6) v’ ~ v* from IH, 0,2, 4.
) 4
Have 8) {5 = ¢, from definition of ~,6.
Have 9) Let £ denote ¢; L ly = ¢} 1 ¢} from 7, 8.

Proceed by case analysis on £

case{ =L
Have 10) v; = v} from 5.

Have 11) vg = v}, from 6.
The result follows from 10, 11 and that @ is a function.

case/ = H
The result follows from the definition of ~.

B SOUNDNESS FOR £ 55

B Soundness for £
Theorem 2 (Noninterference for labeled execution).
b~ Adle—indEe—t =b~0

The ~ relation is defined to be

dom/(8) = quS)
Va € dom(d) . 6[x] ~ &[]
nt ~nk nt ~nll 5~
H()~H'() T()=T()
17 ~[]* vl ~ vy (H,T)F ~ (H',T")*

Proof. By induction on the height, &, of the derivation tree § = e — © taking
the form of a case analysis on the last rule applied. Since the rules int, var, op,
ify, ifa, let, app are analogous to the proof for C, we refrain from repeating
them. Hence, we only need to show soundness for empty, cons, head, tail
and lib, defined in Figure 1.3.

e case []: Based on the rule empty, we have to show:
0=6=[1"~[]"

The result follows immediately by the definition of []X ~ [].

® case e : ey: Based on the rule cons, we have to show:

0~d A 5):el—>v1/\5):eg—>vg
A b e >0 AdE ey —
= lcons(dy, 92)% ~ lcons(?}, 94)L

Have 0) § ~ &,

1) =e — by,

2) 5 ey — 0,

3)0 el — ¥,

4) ' |= ey — bl

Show lcons(?q, 92)* ~ lcons(], 04)L.
Have 5) 0; ~ ¢} fromIH, 0,1, 3.
Have 6) 09 ~ 9/, from IH, 0, 2, 4.

A PRINCIPLED APPROACH TO TRACKING INFORMATION FLOW
IN THE PRESENCE OF LIBRARIES

>

(

Have 7) lcons(1, 02) (). 01, A(). ¥2) from definition of lcons.
~/
1

Have 8) lcons(97,05) = (A(). 91, A(). 04) from definition of lcons.
Have 9) (A(). 01 () ») = (H,T) from definition of H and 7.
Have 10) ((). 94, (). 9) = (H',T") from definition of H and 7.
Have 11) H() ~ H'() from 5,9, 10.

Have 12) T() ~ 7"() from 6,9, 10.
Result follows from definition of (H,T)" ~ (H',1")*,11,12.

case head e: Based on the rule head, we have to show:

008 A dfFe—(HT)AH() =10
A |:5 — (H',T) A H'() =¥

Y

Have 5) (]EI,T) ~ (ﬁ’,T’) from IH, 0, 1, 3.

Result follows from 5, 2, 4.

case tail e: Based on the rule tail, we have to show:

2) T() = 9,
3)0 e — (H,T),
4H1() =

B SOUNDNESS FOR £

Have 5) (H,T) ~ (H',T") from IH, 0,1, 3.

Result follows from 5, 2, 4.

57

e case fj; e: Based on the rule 1ib, we have to show:

F~3 A A= (@)
N OAl = (@) A e—B A L= (0,6)
A LmHv]':<£136f>W<€27U>/\UT§2’Y:{)
A VEes>VAY o= ()
A e VG e v (V) AV gy =0
= o~

[:B = 'U]): <§176f> e <£27’U>’
v T§2 v=7,

9) [z = v = sep) v (6,07,
10) v' 1¢, v = 0"

Have 11) ¢ ~ ¢’ from IH consecutively, 0, 3, 7.
Have 12) & = & from 11,4, 8.
Result follows from Definition 2 together with 1,2,11,4,8,12,5,9

A PRINCIPLED APPROACH TO TRACKING INFORMATION FLOW
58 IN THE PRESENCE OF LIBRARIES

C Soundness for F
Theorem 3 (Noninterference for labeled execution).
b= Adle—indEe—nit =00

The ~ relation is defined to be

dom(8) = dom(&")
Vo € dom(0) . §[x] ~ 0'[x]
nt ~nk n{{:ng 5~
Vo,d .0~ = F(®) ~ F'(¥)
o~ ol FL ~ L

L

Proof. By induction on the height, &, of the derivation tree § = e — © taking
the form of a case analysis on the last rule applied. Since the rules int, var, op,
ify, ify, let are analogous to the proof for C, we refrain from repeating them.
To show soundness of F, it is enough to show soundness of the added and
modified rules, which are fun, app and lib, which are found in Figure 1.5.

® case fun x = e: Based on the rule fun, we have to show:

b=~ A wv=Icos(d,x,e) n v/ =lclos(d, z,e)
— ol /L
Have 0) 6 ~ &,
1) v = Iclos(3, z, €),
2) v’ = Iclos(', z, e).
L L

Show v¥ ~ v'%,

Result follows immediately from definition of
Iclos(d, x, e)F ~ Iclos(d', =, e)”, 1, 2.

e case e e: Based on the rule app, we have to show:

b~0 A dbe—nFlAble—dAF®) =10
N B e P A e A B8 = &
— ,022,0/2'

Have 0) 6 ~ &,

C SOUNDNESS FOR F 59

Have 7) © ~ ¢’ from IH consecutively, 0, 2, 5.
Have 8) F* ~ F"! from IH, 0,1, 4.

We get two cases based on 8.

case F' = lclosA(S, x,e) and I’ = Iclos(&, x, €)
Have 9) 0[x — ?¥] = e — 0 by expansion of Iclose in 3.
Have 10) §'[z — '] = e — @/ by expansion of Iclose in 6. The
result follows from IH, 7,9, 10 and 1.
otherwise
Have 9) ¢ = ¢’ from 8.
There aretwo cases; { = ¢’ = Land ¢ = ¢ =

case / = (' = H The result follows immediately from the defini-

tion of v ~ vif.

case { = ¢’ = L The result follows immediately from the defini-
tion of F'&' ~ F'F 7 3,6.

case f;;: Based on the rule 1ib, we have to show:

NGl =F A &l = (o — 10
A F g (e =70 = F°
A F g (@ — O = B
= Pt~

0'»

5 =~

Have 0) § ~ &,

1) do[f] = F,

2) &olf] = (@ =, 0)",

3) F 1g, (0 = 7,Q)" = F,
4) F il (o =70 = .

A PRINCIPLED APPROACH TO TRACKING INFORMATION FLOW
60 IN THE PRESENCE OF LIBRARIES

Have 5) F* = label(F, &, ¢ — 7, ¢)*l<0 by expansion of 1 in 3.

Have 6) = label(F, &y, — 7, C)[[”]]ﬁo by expansion of 1 in 4.
Have ¢ = label(F, &, ¢ — v, O)Fllee = B¢ from 5, 6.

Hence, { = {' = [[s],.

If ¢ = ¢ = H, the result P ~ F'H follows from definition of ~.
Have /= /¢ = L.

Show 7) FL ~ F'L,ie,Vo,% . 0~ ¥ = F(d) ~ F'(
Assume 8) & ~ ¥/,

Show 9) F(9) ~ F' ().

Have 10) v 1¢, v = F(9), where & | ¢ = (v,¢), [{Teue = &2
F(&2,v) = (&3,v) from expansion of label in 5.

Have 11) o 1¢, 7 = F'(#'), where & | ¢ = (v/,¢), [Clne = &
F(&,v") = (&, v) from expansion of label in 6.

)

(33

Theresultv 1, v = F(9) ~ v/ Te, v = F"(9') follows from Definition 3
together with 10 and 11.

O

D Supporting lemmas

Lemma 1 (Soundness of environment updates).
by~ "D~ A by =bi[m > D] A D) =0 [z — D] = by ~ b

Proof. By structural induction on z. Since d, = 4 [z — @] and
8, = &1 [x — ©'] we know that x, © and ' share structure.

case 0) z = [|

Have 7) 5y = 6, from 3,5.
Have 8) 0}, = &, from 4, 6.

Result follows from 1, 7, 8.

D SUPPORTING LEMMAS

case)z =z - x,
Have 1) §; ~ §1,

Have 5) ¢ ¥, from 0.

Have 6) 9 o!. from 0.

Have 7) © from 2,5, 6.
)

Have 8) ¢, ~ /. from 2,5, 6.

Have 9) 5y = b, [, — ©,] and 5p = 01 [z — ©] from
definition of § updates

Have 10) &} = 6! [, — ©.] and 8, = & [z — ©'] from
definition of § updates

Have 11) &/, ~ 4/, from 1,7

Result follows from IH, 11,8

62

A PRINCIPLED APPROACH TO TRACKING INFORMATION FLOW
IN THE PRESENCE OF LIBRARIES

Paper 11

Information Flow Tracking for
Side-effectful Libraries

Alexander Sjosten, Daniel Hedin, Andrei Sabelfeld

International Conference on Formal Techniques for Distributed Objects,
Components, and Systems (FORTE), Madrid, Spain, June 2018

63

1 INTRODUCTION 65

Abstract

Dynamic information flow control is a promising technique for en-
suring confidentiality and integrity of applications that manipulate sen-
sitive information. While much progress has been made on increasingly
powerful programming languages ranging from low-level machine lan-
guages to high-level languages for distributed systems, surprisingly
little attention has been devoted to libraries and APIs. The state of the
art is largely an all-or-nothing choice: either a shallow or deep library
modeling approach. Seeking to break out of this restrictive choice, we
formalize a general mechanism that tracks information flow for a lan-
guage that includes higher-order functions, structured data types and
references. A key feature of our approach is the model heap, a part of the
memory, where security information is kept to enable the interaction
between the labeled program and the unlabeled library. We provide a
proof-of-concept implementation and report on experiments with a file
system library. The system has been proved correct using Coq.

1 Introduction

While useful, access control is not enough: it is crucial what applications do
with the data after access has been granted [26]. Information flow control
tracks the propagation of data in programs, thus enforcing confidential-
ity and integrity policies. Due to the widespread use of highly dynamic
languages, such as JavaScript, there has been a growing interest in dynamic
information flow control. There are two basic kinds of flows to consider: explicit
and implicit [5], related to the notions of data flow and control flow. Dynamic
information flow is tracked at runtime by extending the data with security
labels, which are propagated and checked against a security policy during
execution. The detection of potential security violations cause program exe-
cution to halt.

While much progress has been made on increasingly powerful program-
ming languages ranging from low-level machine languages to high-level
languages for distributed systems, surprisingly little attention has been de-
voted to libraries and APIs'. The main challenge is when the library is not
written in the language itself, and thus not compatible with the labeled
semantics of the program. There are mainly two situations where this occurs:
1) when the library is part of the standard execution environment, and 2)
when the library is brought into the language using some form of foreign
function interface (FFI). In such cases, values passing between the program

1For elegance of expression, when we write library in this paper we refer to both libraries
and APIs.

66 INFORMATION FLOW TRACKING FOR SIDE-EFFECTFUL LIBRARIES

and the library must be translated. The process of translating values from
one programming language to another is known as marshaling.

Marshaling of labeled values additionally entails that security labels must
be removed from the values being passed from the program to the library,
and reattached on the values returned from the library to the program.
We refer to those steps as unlabeling and relabeling of the values, and the
description of how it should be done as a library model. The main difference
between standard marshaling and marshaling of labeled values is the latter
removes information from the values passed to the library. To be able to
correctly relabel values going from the library to the program, the labels
removed during the unlabeling process must be used, since the returned
value contains no security information. This means that the library models
are inherently stateful — the removed labels are stored in a model state used
when relabeling.

Library models can be split into two categories: deep and shallow mod-
els [14]. Deep models track information flow inside the library, requiring
precise modeling of the execution of the library, while shallow models are
limited to the security labels on the boundary of the library. Often, deep
models necessitate reimplementation of parts of the library functionality
within the model, making them difficult to create and maintain. Shallow
models, on the other hand, are significantly more lightweight, but possibly
too imprecise. In this work, we are interested in the boundary between deep
and shallow models.

Current state of the art in dynamic information-flow tracking does not
fit this classification entirely, in part due to ad-hoc handling of libraries.
To the extent addition of new libraries is supported, the models used tend
towards shallow models. This is true for, e.g., FlowFox [13], and experimental
extensions of JSFlow [15]. On the other hand, JSFlow and FlowFox both use
deep models to provide fine grained information-flow tracking for built in
libraries. JSFlow, e.g., implements the full ECMA-262 version 5 standard
using what is best considered a deep approach.

In recent work, Hedin et al. [18] initiate a framework for tracking infor-
mation flow in libraries. The setting is a labeled program and an unlabeled
library that share the same core semantics (split semantics) in order to limit the
marshaling to security labels only. Their work targets a focused functional
language with higher-order functions (which allows for both callbacks and
promises to exist), and structured data in terms of lists. It does not, however,
handle side effects, which means that many libraries cannot be modeled in a
satisfactory way. As an example, it is unavoidable for a standard file system
library to maintain state to keep track of open files, stream positions and
buffers. The success of a function read(path, success, fail) is dependent

1 INTRODUCTION 67

both on the file path and the state of the library which must be reflected by
security models for the library.

The combination of state and higher-order functions significantly com-
plicates the library models and the model state over the ones used by Hedin
et al. If the state is first-class (i.e., it can be sent around as values, as in lan-
guages with mutable references, records or objects) the situation is further
complicated. This is the setting we are interested in handling, as it captures the
essence of many of the problems found when modeling real libraries.

To this end we introduce a model
heap, allowing library values to be tied
to a mutable model state, which allows
for secure modeling of the interaction rea(i‘(..\)\ rea?(...)
between first-class state and higher- | T Y
order functions. “_ | [LModel
1-lread(..) |17

Program Library

\

/

Consider the file system example,
depicted in Figure 2.1. When the pro-
gram calls the library function read, Figure 2.1: Model heap illustration
the library function is first lifted into
the program using the corresponding function model defined by the library
model, LModel. The lifting (illustrated by the dotted arrow in the figure) is
done by means of wrapping and results in an unlabeled function that can be
called by the program. When the wrapper is called with labeled arguments,
a new call model state, CModel, is created and used to hold the labels of the
arguments, since the underlying library function requires unlabeled values.
As can be seen in the figure, the call model state is connected to the library
model state and together they define the model state that the function model
of read interacts with. Any other values, including higher-order functions
and first-class state, defined in the library share the same library model state,
which guarantees that they have the same view of the library state, even in
the presence of mutability.

There are two main benefits of our work over ad-hoc modeling of li-
braries. First, it lowers the modeling effort significantly, and, second, given
that the models properly describe the library, it guarantees noninterference.
Both benefits stem from expressing the models in a simplified model lan-
guage that controls the marshaling process, thus sidestepping the need to
reimplement it repeatedly.

Considering the dimension of shallow and deep models, our work can
be seen as exploring the boundary. Shallow models are expressed solely in
terms of the boundary labels, while our work gains access to intermediate
labels when models for lazy marshaling, higher-order functions and first-
class state are triggered. In addition, it is relatively easy to extend our system

68 INFORMATION FLOW TRACKING FOR SIDE-EFFECTFUL LIBRARIES

to allow models to use the runtime values allowing for dependent models [18].
Compared to fully deep models, our work is limited to the information
passing between the program and the library at the point of passing. Thus,
intermediate values and labels that do not participate in cross-boundary
activity is without reach. While deep models in theory have access to more
information and therefore have the potential to be more precise, it is unclear
if the added precision is significant in practice, in particular in the light of
the added implementation cost.

Contributions The main contributions of this paper are:

* We have created a language containing three cornerstones of library
modeling: higher-order functions, first-class state, and structured val-
ues (the syntax and semantics are presented in Section 2 and Section 3,
respectively, while Section 6 discusses correctness).

* We have implemented a prototype and used it to explore the inter-
action between the different features of the language (examples that
illustrate our mechanism are reported in Section 4).

* We have conducted a case study on a file system library, inspired by
the file system library in node.js [10], showing that our language is
able to handle stateful libraries (the case study is reported in Section 5).

* We have formalized the language and its correctness proof in Coq [20].

The scope of the prototype is to experimentally verify applicability of
models, not to assess performance in a full-scale implementation. The proto-
type serves as a complement to the formal proof to create a system that is
both correct and useful. The full version of the paper, along with the formal-
ization in Coq and the proof-of-concept prototype can be found at [28].

2 Syntax

The language we present is a small functional language with split semantics
and lazy marshaling. The syntax of the language is defined as follows, where
n denotes numbers and x denotes identifiers.

e n= nl|x|ife thenegelsees|letx=e;ines|funz=ec|eses|
Ty |e1@ea | Oe | head e | taile|errea | []] (e1,e2) | ()]
refel|le|{x:e}|ex|e:=ey|er;es|upgel

The syntax of the language is entirely standard apart from the x;;, construc-
tion that lifts a library value to a program value, and upg e ¢ that gives the

2 SYNTAX 69

result of the expression a given label, ¢ ::= L | H. For simplicity, we identify
sets with the meta variables ranging over them. Let X range over lists of
X for any set X, where [| denotes the empty list and - denotes the cons
operator. An application in the language is a triple (d,,, d;, m), where the first
component is the labeled program, the second component is the unlabeled
library and the third component is the library model. Throughout the rest of
this paper, we use program when referring to the labeled part, and library
when referring to the unlabeled part.

The top-level definitions, d, allow for named definitions of functions and
values d ::= fun f(x) = e | let = e. The top-level model definitions, m,
allow for named definitions of models and labels m ::= mod x :: v | bl x :: K,
where ~ denotes relabel models and « denotes label terms. The label terms,
k= (| a | K1 U Ky are terms that evaluate to labels in a given model state
and consist of labels, ¢, label variables, ct, and the least upper bound of two
label terms. The relabel models, v, used to relabel library values, are defined
as follows

yu= k| (y,72)" [| (@ =7, 0" | ref(p,7)"

where ¢ denotes unlabel models, used to unlabel program values, and ¢
denotes effect constraints defined below. All values are given a label by a label
term, and the relabeling of structured values follows the structure of the
value. To relabel a function, we must know how to unlabel the argument,
how to relabel the result, and how the function interacts with the model
state. To relabel a reference we must know how to unlabel the values written
and how to relabel the values read. The unlabel models, ¢, are defined as
follows.
p = #a® | (p1,02) | []*

Unlabeling of values is performed by storing the label of the value in the cor-
responding label variable in the model state. As for relabeling, unlabeling of
structured values follows the structure of the value. Unlabeling of functions
and references introduces an abstract name, #«, used by library functions to
tie any interaction to their model state in the effect constraints, ¢.

Cu=la—yp|k-#a—ylr-#ay—pliEa—k

In the order of definition: a library function that reads a labeled reference
defines how to unlabel the read value, a library function that writes to a
labeled reference defines the security context in which the write occurs and
how to relabel the value to be written, a library function that calls a labeled
function defines the security context in which the call occurs, how to relabel
the parameter and how to unlabel the result, and finally, a library function
that modifies the library state defines the security context of the update and
how the security model changes.

70 INFORMATION FLOW TRACKING FOR SIDE-EFFECTFUL LIBRARIES

3 Semantics

We define the semantics step-wise in three parts. The first part defines the
labeled values, and the execution environment. The second part defines the
evaluation relation and how the function representations of the values are
created and used in the semantics. Finally, the third part defines how values
are marshaled between the program and the library. For space reasons, parts
of the semantic definitions have been left out. We refer the reader to the
appendix for the missing definitions.

3.1 Values

In order to differentiate between the labeled semantics and the unlabeled
semantics, we use X to denote an entity in the labeled semantics correspond-
ing to the entity X in the unlabeled semantics. We only give the labeled
values. The unlabeled values are defined analogously. The values in the
language, 0, are integers n, tuples, higher-order functions F, lists (ﬁ , T),
references (}?, W), and records O, where higher-order functions, lists, refer-
ences and records are represented as (pairs of) functions in order to simplify
the marshaling.

o n=nl | (01,02) | OF | FCLH,DY T[] (R,W)F| O

The labels, ¢, form a two-point upper semi-lattice L = H, where L denotes
low (public) and H denotes high (private). Let ¢; L {5 denote the least upper
bound of ¢; and ¢, and let 9% = v©12% for § = vf1,

The execution environment is a triple (¢,I',3) of the security context,
¢, the stack, and the heap. The security context ¢ ranges over labels ¢. The

stack I' is a triple of stacks (p, p, p), containing pointers to the labeled frames,
the unlabeled frames and the model frames, respectively. The heap ¥ is a
triple of heaps, (¢, 0, &), consisting of the labeled heap, the unlabeled heap
and the model heap. The labeled and unlabeled heaps can contain values
(for implementing references), and frames, whereas the model heap only
contains frames. The labeled and unlabeled frames, & and w, are maps from
identifiers to values, and the model frames, &> are maps from identifiers to
model items. Each frame represents a scope, and together with the correspond-
ing stacks they form scope chains. The model items, i ::= ¢ | v | ¢, consists

of labels, relabel models and effect constraints.

3.2 Evaluation relations

The evaluation relation for program execution is of the form¢,I' = (X4, ¢) —
(22,0), read “expression e evaluates in the environment consisting of the

3 SEMANTICS 71

lookupL(T", ¥, z) = ©
L0 —Enh) 7 GTE) = (59)
§7F’:(Zlael)—>(22avf> U1 5&0
Sul,I'f= (X, e0) — (X3, 02)
s, = (31, if ey then eq else e3) — (B3, 05)
T (B e1) = (S2,07) 01=0
sul,l' = (X2,e3) — (3, 03)
§,T = (X1, if e1 then ey else e3) — (X3, 05)

int

if-true

if-false

fun

S, (pyp, p) E (B, fun x = e) — (Elclos(@x,e)L)
T E (S e) = (52, F) 6,T | (Sa,e9) = (3, 81)
F(§ U éa F7 23761) = (24a@2)
§7F |: (21761 62) I (247/05)
s,T'k=(%,e) = ((6,0,6),0) pfresh
T (5 ref) — (319 — 7], 0,), (iread(7), Iwrite(5)))
T E (Z1e) = (5, (RW)Y) R(subT, %) = (5,0)
,T = (Zy,le) — (23,09
¢, I’ ': (21761) - (232’ (R’W)é) ¢, I’ }: (22562) - (237@)
W(C (] E,F, 23@) = 24
g?F 'Z (Elael = 62) - (247’[})
lookupU(I', X, z) = v lookupM(I',¥,z2) =v vilpxy=70
o, T (3, 2m) — (3,0)

ref

deref

assign

lib

Figure 2.2: Selected labeled semantics

security context, ¢, the stack, I', and the heap, ¥, resulting in the updated
heap X3 and value ¢”. Similarly, library execution is of the form ¢,I' |=
(21, €) v (22,v), where the unlabeled semantics is parameterized over the
security context to model that the context is global and always available to
the marshaling functions?.

Figure 2.2 contains a selection of the semantic rules of the program
semantics related to the marshaling of values. See Appendix B for a full set
of rules.

2In an operational semantics global non-constant values must be passed around during
execution, similar to in a pure functional language.

72 INFORMATION FLOW TRACKING FOR SIDE-EFFECTFUL LIBRARIES

The rules of the core language are standard. Whenever an integer is
created (int), it is always originally labeled L. Variables are retrieved from
the labeled heap using lookupL in var. If-statements (if-true and if-false)
evaluate the conditional expression and based on the result select which
branch to take. The branch taken is evaluated in a security context of ¢ L1 ¢
and the returned value is raised to ¢, where /¢ is the label of the result of the
conditional expression.

Function closures are represented as functions, F : (,T,%1,0) — (32, 0),
created by Iclos (fun) in the following way.

ICIOS(BA/,:L',G) = >\(§ (pv pv) (6’1,0'1,&1) 0) . (2362)
where 65 = 61[p — {x — 05}], p fresh
and Sy (ﬁ ‘BA,787£)): ((0’2,0’1,0’1),) (27172)

The function closure will, when interacted with, create a new pointer to a
labeled frame containing the mapping of the parameter name z and the
actual value 91, which is raised to the current security context. The function
expression e is then evaluated, using the newly created pointer along with
the updated heap. When applying a function closure (app), the body of the
function is executed in the program semantics, under the elevated context
consisting of the current security context raised to the label of the function
closure. Creation and application of library closures, F' : (¢,I',%1,v) —
(X2,v), is analogous.

Safe implementation of marshaling of references requires the ability to
trap and modify reads and writes in order to marshal the values passed by
the interaction. For this reason, references are represented as pairs of func-
tions, one function for reading the reference, R: (s, I,%1) — (X2,0), and
one function for updating the reference, W (¢,T,31,0) — Xo. This allows
us to marshal references by wrapping the read and the write functions in
functions that perform the marshaling of the values at the time of interac-
tion, similar to lazy marshaling of lists [18]. Most languages do not support
the creation of functions that are triggered on interaction with values such
as references or objects, which means they cannot support marshaling of
first-class mutable state. A notable exception to this is JavaScript that allows
methods to be tied to different aspects of object interaction via the use of
Proxy objects [23].

Creation of references given a fresh pointer into the labeled heap is
defined by Iread and lwrite as follows.

Iread(p) = A(, T, (6,0,6)) . ((6,0,5),0), where b = 5[p]
lwrite(p) = A(c, I, (61,01,61),9) . (62,01,51)
where v’ = 61[p],s © 4,69 = 61[p — %]

3 SEMANTICS 73

References (ref) are created by selecting a fresh heap location made to point
to the value of the reference. The heap location is then used to create a pair
of access functions. The created reference follows the same intuition as for
all created values. All values are labeled L upon creation, which is why the
pair of access functions are labeled L in ref. Note that the value that the
reference is referring to may be labeled differently, due to the distinction
between reference as a value and the value the reference is referring to.
Dereferencing (deref) uses the read function of the reference to get the value
to be read, while assignment (assign) uses the write function. Creation and
use of library references, R : (¢,I',%1) — (32,v) and W : (¢,T', X1, v) — 3
is analogous.

It is worthwhile to point out the no-sensitive upgrade (NSU) check in lwrite,
which demands that the context, which the label of the reference is a part of,
is lower or equal to the label of the referenced value, ¢ = /. Allowing labels
of values to change freely leads to an unsound system, due to the possibility
of implicit flows into the labels themselves [1, 29].

Disregarding the encoding of functions and references into functions, up
to this point, the labeled and unlabeled semantics are equivalent to their
standard formulations. The essence of this paper is in the marshaling of
values between the program and the library, performed by the unlabeling
and relabeling functions, defined in the following section.

3.3 Marshaling

All interaction between the program and the library is initiated by lifting
named library values into the program. This is done (lib) by looking up the
value, and the corresponding relabel model used to relabel the value. Inter-
action with the relabeled value may cause further marshaling. Unlabeling of
a value is done w.r.t. an unlabel model, ¢, which defines how to store the
removed label(s) in the model state. Relabeling of a value is done w.r.t. a rela-
bel model, v, which defines how to compute the label in terms of the model
state. Formally, unlabeling is a function of the form ¢ | rx, ¢ = (2, v)
taking a labeled value 7, an environment, ¢, I, ¥; and an unlabel model ¢
and returning an updated heap, 33, and an unlabeled value v. Similarly,
relabeling is a function of the form v {r 5, v = 0, taking an unlabeled value, v,
an environment, I', 3, and a relabel model, v, and returning a labeled value
0. The only modified part of the heap for both unlabeling and relabeling is
the model heap.

There are six types of values: integers, tuples, lists, records, higher-order
functions and references. In the rest of this section we describe how to
evaluate label terms (used when relabeling) and how to marshal higher-

74 INFORMATION FLOW TRACKING FOR SIDE-EFFECTFUL LIBRARIES

order functions and references. We refer the reader to the appendix for the
treatment of the other constructs.

Label terms Evaluation of la-

bel terms is done w.r.t. amodel [[o]|; s, =
state, where lookupM is used to /
traverse the model scope chain [lp s =¢
to find the first label correspond- [w “2]]112 = [[Hlﬂr,z u [[“2]]112
ing to a given label variable.

¢, iflookupM(T, E, o) = ¢
L, otherwise

Higher-Order Functions Marshaling of higher-order functions involves
both marshaling the functions as values as well as ensuring the parameter
and return value are properly marshaled.

Unlabeling. Unlabeling a program closure removes and stores the label and
returns a library closure created by wrapping the program closure. The
library closure is tied to the abstract name, 7, used by the wrapper to relabel
the parameters before the call and unlabel the result after the call.

F* | rs #7* = (updateM(s, T, 2, a, £), u-lclos(F, £, #))

The translation of a program closure, F, into an library closure is per-
formed by u-Iclos, that takes the program closure, the label of the program
closure and the abstract name.

u-lclos(E, 61, #7) = A5, T, 21, v1) . (3, v2)
where & v — ¢ = lookupM(T, X1, 7)
ly = [[’f]]r,zl
01 =1 TF,XEI Y
(22,@2) = F(§ [} El [} fg,l—‘, 21,@1)
(Z3,v2) = D2 Louuty 0,55 @

When the library closure returned by u-Iclos is applied the following occurs.
First, the function call model bound to the abstract name is fetched using
lookupM. The function call model contains a label term representing the
security context of the application, how to relabel the parameter and how to
unlabel the return value. Second, the relabel model, ~, is used to relabel the
parameter, v;. Third, the program closure is called in the security context of
the call raised to the label of the closure and the evaluation of the context
label term, x. The result of the call is a labeled value, 7. Finally, 05 is unla-
beled which gives the result, vs, of the application of the unlabeled closure.
Notice that all relabeling and unlabeling is done with respect to the model
state of the caller.

3 SEMANTICS 75

Relabeling. Relabeling a library closure is done by labeling the program
closure created by wrapping the library closure. The wrapper unlabels the
arguments before the call and relabels the result of the call.

F TE,(BA,B-,E) (QD - ’YaQR = I—UCIOS(F, é) (90 - 77£))[[K]](£1£‘@’E

The process is controlled by the function relabel model, (¢ — v, ()", where
the evaluation of gives the label of the wrapper closure. B

The translation of the library closure, F, into a program closure is per-
formed by l-uclos, which takes the library closure, the current model frame
stack, the unlabel model for the parameters, ¢, the relabel model for the
return value, v, and the effect constraints, (.

luclos(F, j,, (¢ — 7€) = Ms, (3 p,), (6,0, 5), 01)- (S,)
where %, = (6,0,5[p — J]), p fresh
(X2,v1) =01 lq,(é,g,ﬂéz),zl ®
33 = {I<a.ppiop,). z
(Ba,v2) = F(s, (p,p, p- p,), X3, 01)
U2 =02 V(p,p.55,). 84 Y

When called the program closure produces a fresh frame pointer, pointing to
a new model frame in the model heap. The parameter to the library function
is unlabeled based on the unlabel model, ¢, and the effect constraints, ,
are evaluated to update the model state accordingly. After that, the library
function is called with the unlabeled parameter in the security context, ¢, of
the call. The result of the function call is relabeled with the relabel model, ~,
and returned to the program. Note that all labeling and unlabeling is done
w.r.t. the model frame stack of the unlabeled closure. Also note that the order
is important; if the unlabeling of the parameter occurs after evaluating the
effect constraints, the label of the parameter cannot be used when updating
the model state with the side effects.

Effect constraints. Effect constraints define how a library function interacts
with unlabeled program functions and references and how the library func-
tion changes the model state. Model state changes are effectuated on call to
the library function whereas effect constraints that define interaction with
unlabeled program functions and references are stored in the model state.
When a library function or reference is interacted with, the abstract name
will tie the interaction to the corresponding effect constraint in the model
state of the interaction. The meaning of the effect constraints is defined as
follows

76 INFORMATION FLOW TRACKING FOR SIDE-EFFECTFUL LIBRARIES

{I'#a — ¢l}ers = defineM(T, X, o,)
{lc - #a —vl}crs defineM(T', &, a, & -)
{lx - #av - ¢llcrs defineM(T', X, a, 6 -y —)
{lk1 F o —Kal}ers = updateM(su [[m]]nz,I‘, Y, a, [[52]]271“)
when ¢ u [[51]l 5, E lookupM(T', ¥, @)

where defineM binds the name « to its corresponding model value in the
top model frame, if « is not defined in that model frame, updateM updates
the label pointed to by « in the scope chain, or inserts it if it is not present,
and lookupM returns the model value that is the first to match the name «
in the scope chain.

References Marshaling of references shares some similarities with mar-
shaling of higher-order functions. Calling a function passes the argument
and the return value in opposite directions, similar to reading and writing
to a reference.

Unlabeling. Unlabeling a program reference removes and stores the label,
and the read and write functions are wrapped to create library counterparts.

(Ra W)[l§,F7Z #ﬂ-a = . .
(updateM(s, T, X, o, £), (u-lread(R, ¢, #m), u-lwrite(W, £, #m)))

The read and the write functions are translated independently w.r.t. the
abstract name #m.

The program read function, R is translated by u-lread, which takes the
read function, the label of the reference and the abstract name.

u-lread (R, ¢, #7) = A5, T, 21) . (Z3,0)
where ¢ = lookupM(T', X1, 7)
(89,0) = R(s L {,T, %)
(Zva) =0 leuer,s, ¢

When the resulting library read function is interacted with, the program
read function is used to get the labeled value of the reference. This value
must be unlabeled before being returned, which is done by looking up a
program reference read model, ¢, in the model state of the interaction. It is
the model of the caller, i.e., a library function model that provides the read
model for the references it reads.

3 SEMANTICS 77

The program write function, 1¥ is translated by u-lwrite, which takes the
write function, the label of the reference and the abstract name.

u-lwrite(W, £, #7) = A(s, T, 51, 0) . $s
where & v = lookupM(T', ¥,)
=v1ryx, ¥
o = W(q ulu [I:H]]F7EI’F7 3, 0)

When the resulting library write function is used, the associated program
reference write model, x 7, is fetched in the current model state. This
model defines both how to relabel the written unlabeled value, and the
context in which the write occurs. Then the unlabeled value, v is relabeled
before being written using the labeled write function in a context consisting
of the current security context of the call raised to the reference label and the
evaluation of the context label term, «.

Relabeling. Relabeling a library reference is done by translating the read and
write functions into program counterparts and relabeling the result.

(Rv W) TZ,(E,B,E) ref((pvly)ﬁ =

(l-uread (R, p,v), l-uwrite(W, p, v, <p))[["‘]] (B,0),

The read and the write functions are translated independently w.r.t. the
relabel model, ref (o, v)".

The library read function, R, is translated by l-uread, which takes the
read function, the current model frame stack, and the relabel model, ~.

1- uread(R p2,’7) -)‘((pa Py ﬁl)vzl) . (2271})
where (227) = R(Cv (ﬁaB?él)a X

vsz(A

When the resulting program read function is interacted with, the unlabeled
read function is used to fetch the unlabeled value of the reference. The result
is relabeled using the relabel model in the model state of the reference and
the result is returned.

The library write function W is translated by l-uwrite, which takes the
write function, the current model frame stack, the relabel model, +, and the
unlabel model, ¢.

l—uwrite(VV,éz,%cp):)\((pvpv)El?) Y3

where (= [[lblterm(i)]]i(;pp s SEXL
(227)*U§l§(p.),2 P

Pip:P,
B3 = W(s, (p,p:), ¥2,0)

78 INFORMATION FLOW TRACKING FOR SIDE-EFFECTFUL LIBRARIES

Program LModel Library
let (g, r) = lib f 10 I L fun f x =
in r := upg 15 H; 0 |r:=ref(l,l) let r = ref x
g 20 fuor—(y—1r) in (\y. 'r, r)

Stacks: p:[0]

Figure 2.3: Initial structure

The reason l-uwrite takes the relabel model in addition to the unlabel model
is that it is used to calculate the label against which the NSU check is made.
The label of the stored value is represented by the label term of the relabel
model, extracted by the lblterm function, defined in the obvious way by
pattern matching. If the write is allowed, the labeled value to be written to
the library reference is raised to the context ¢, before being unlabeled using
the unlabel model, ¢. Finally, the unlabeled value is written to the library
reference, using the unlabeled write function.

Interaction with the model heap To see how higher-order functions and
references interact with the model heap, consider the code snippet below
to the right. The program calls the library function f, which takes a param-
eter, and creates a reference r initially set to the value of the parameter.
f returns a pair, where the first element is a

function that, given any argument, will derefer- wet (9,0 = 1b 710

in r := upg 15 H;

ence the reference and the second element is the g 20

actual reference. This pair is stored as (g, r). %%

Thereafter, r is assigned the value 15, before ;2; i ';ef U

g is called with the parameter 20°. mod f i x > (y o> 1, 1)
The following occurs w.r.t. relabeling and fun f x = let r = ref x

unlabeling in the program, where the initial in (\y. tr, 1)

setting can be seen in Figure 2.3.

When f is lifted to the program, l-uclos is used to relabel the library
closure, which will copy the model frame stack to the wrapped f and store
the function model z — (y — [, r). In the example, the resulting program
closure is applied to 10%, which causes a new model frame to be allocated on
the model heap, into which the argument is unlabeled, causing L to be stored
in the new model frame as the label for x, and the pointer to the new model
frame is stored in the model frame stack. After this, the actual unlabeled
function is called, which results in the returned pair being relabeled. The
relabeling of the pair results in l-uclos being used to relabel \y. !r with
the model y — [, and l-uread and l-uwrite being used to relabel r with the

3 SEMANTICS 79

LModel
Program 1 z— L Library
let (g, r) = lib f 10 L fun f x =
in r := upg 15 H; 0 |r:ref(l,l) let r = ref x
g 20 fuox—(y—1r) in (\y. 'r, r)

Stacks: 5:[1,0] f:[0] g:[1,0] r:[1,0]

Figure 2.4: Calling relabeled closure

LModel
Program 1 T — L Library
let (g, r) = lib f 10 l:H fun f x =
in r := upg 15 H; 0 |r:ref(l,l) let r = ref x
g 20 froax—(y—1r) in (\y. !'r, r)

Stacks: p:[0] f:[0] g:[1,0] r:[1,0]

Figure 2.5: Writing to r

reference model r. The key here is that the relabeling occurs in the same
model state, which means that the produced program function and reference
will be bound to the same model frame stack. This causes writes to the
reference to modify the model frame shared with the function, ensuring that
they have the same view of the model of the reference. The entire process is
highlighted in Figure 2.4.

When the program writes to the reference (r := upg 15 H), the closure
from l-uwrite is triggered, causing [in the shared model frame to be updated
to H, which can be seen in Figure 2.5. Note that the pointer to the model
frame created from the call to the wrapped f is removed from the model
frame stack. This ensures any subsequent calls to the wrapped f, as well as
any created wrappers will not be able to use that model frame, as it belongs
only to the first call to the wrapped f and the created wrappers within the
call. When the function g is called, it will trigger its l-uclos wrapper and, as
can be seen in Figure 2.6, the model y — [is used in the l-uclos wrapper for
g, with [being used to relabel the result. Since [was modified by the writing
to the reference (Figure 2.5), the shared view of the library model state, will
make the function g return a secret value.

80 INFORMATION FLOW TRACKING FOR SIDE-EFFECTFUL LIBRARIES

LModel
2 y— L
Program Il H Library
let (g, r) = Uib f 10| 1 |r=ref(l,]) fun f x =
in r := upg 15 H; frae—(y—1r) let r = ref x
g 20 0 r— L in (\y. 'r, r)

Stacks: 5:[2,0] f:[0] g:[1,0] r:[1,0]

Figure 2.6: Calling g

4 Examples

In the following section we provide some examples to highlight how the lan-
guage would interact with common programming techniques. The language
used in this section is an extended version of the language of the paper.
The major differences are the addition of records, functions with multiple
arguments, a limited form of pattern matching, and optional unlabeling. The
extensions are all present as experimental features in the implementation.
In all examples, the code above %% is the program and the code below is the
library.

Writebacks. Returning two or more results from a function can be done in two
ways: 1) tupling the result, or 2) by using writebacks. When using writebacks
for, e.g., reading a file, the read function is provided a pointer to a place
in the memory where the contents of the file should be stored instead of
returning a pointer to the data.

In our language, writebacks can let buf = ref 0
be modeled by passing program ref- fun main () = (lib action) buf;
erences to the library as shown to the . tbuf
right. In the example, the program Lot data = 42
variable buf is a program reference. mod action :: #b -> L {| #b < H |}
The reference is passed to the library fun action b = b := data; ()

function action that writes the result to the buffer. When interacting with
a program reference, the reference is given an abstract name (b for buffer
in this case) that the function interacting with the buffer uses to relabel the
interaction.

In case the function used the writeback under secret control, repre-
sented by the model mod action :: #b -> L {| H |- #b <- H |}, the exam-
ple would fail due to NSU. The reason being the value the reference buf is
pointing to is public, and is not allowed to change label under secret control.

4 EXAMPLES 81

Modifying the declaration of buf to be let buf = ref (upg 0 H) solves this,
as the reference will point to a secret value.

Library state. Libraries often keep state, e.g., error codes, computation results
or options set by the program. Typical examples are the predefined object
properties $1, . .,$9 from JavaScript RegExp [24].

The example to the right shows how

fun main () =

state can be used to store error informa- (lib action) (upg 42 H);
tion. In the example, the function action print !(lib errno)
fail depending on the value of the s
may P g 3 3 . bl 1 :: L
parameter. The reason it failed is stored mod errno :: ref (1, 1)
into the library reference errno, which let errno = ref 0
is modeled by a security label used to
. mod action :: a -> L {|] 1 <- a |}
relabel program reads and writes of the ! . .
K A un action x = if x == 1
reference. Since the update of errno is then errmo := 1
conditional, it means that the value of else ();

errno is dependent of the argument of 0

the action function. To model this, the argument label is stored in the model
variable a, which is used to update the security label of errno. Note that the
update of the security label is independent on whether the operation fails
or not. This is needed to ensure that the label of errno is independent of
secrets. The label of errno indicates that the error code is public. Consider
the case where an action sets the error code under secret control, represented
by the following model mod action :: a -> L {| H |- 1 <- a |}.If such
an action was used our system would halt execution, since the update of the
error code would trigger NSU.

The one-place buffer. In the previous example, the library state is exposed to the
program, which can freely read and write to errno. Frequently it is good prac-
tice to hide the internal state of the library and only allow the program to ac-
cess it indirectly via the functions of the library.

We exemphfy this by imple_ fun main () = (lib set) (upg 42 H);
menting a simple one-place (lib getAsync) print;
buffer, seen to the right. While (1ib get) O
simple, the example captures le N
the essence of, e.g., buffered file let buf = ref 0
access.

Since there is no model for r:z: z:: ;::b; 1{)'(t<al}
buf, it is not accessible from the '
program. Instead, the state of mod get :: _ -> 1
the library is modeled using the fun get () = tbuf

label 1. Thls label I.S used by mod getAsync :: #cb -> L {| #cb 1 -> _ |}
the operations that give the pro- fun getAsync cb = cb !buf; ()

82 INFORMATION FLOW TRACKING FOR SIDE-EFFECTFUL LIBRARIES

gram access to the buffer contents. When setting the value of the buffer via
set, the label of the value is used to update the label of the library state. When
reading, either via the synchronous function get or via the asynchronous
function getAsync, 1 is used to relabel the dereferenced value from buf. In
the synchronous case by relabeling the dereferenced value directly, and in
the asynchronous case by relabeling the parameter to the callback. Note the
use of the wildcard _ to indicate values that are not important for the model.

Stored callbacks. Stored callbacks are callbacks that are saved in the internal
state of the library and used, e.g., to signal the occurrence of some event. A
typical example of stored callbacks is the event handlers present in many
languages.

Consider the program to the

. . fun main () = lib event := print;
right that registers an event handler (lib fire) (upg 42 H)
by storing the event handler (print %
in this case) in the event reference “’z t ”tL ¢ (L seventrl)

) mod event :: re , #even
of the library. The relabel model of let event = ref 0
the event will unlabel the function
and give it the abstract name event. mod fire :: a -> L {| #event a ->_ |}

fun fire x = levent x; ()

The event is triggered by calling
the fire function, which takes the event data and passes it to the stored event
handler. In the example, the fire function may be called from the program.
In a practical setting, events may be triggered by interacting with the library
(e.g., by adding values to a data structure) or from the library itself to indicate
that certain events, such as mouse movement or clicks, have occurred.

In the example, it is not possible to fetch the event handler from the
library and call it. In order to allow for this, we have to change the relabel
model for the library reference to relabel read interactions as functions,
changing the event model to be the following.

mod event :: ref (a -> b {| #event a -> b |} 1, #event™l)

To understand the new relabel model we must recognize that unlabeled
program functions that are passed back need to be relabeled as any other
library function. In this case, the library function that should be relabeled
calls the unlabeled program function, and needs a corresponding call model.
The result is a function that unlabels its argument into the label variable a,
which is used to relabel the argument before calling the program function.
The result of calling the program function is unlabeled into the label variable
b, which in turn is used to relabel the result of the relabeled function.

5 CASE STUDY 83

5 Case study

For case study, we model an API inspired by the Wbl :: L

fs API of node.js [10]. In the interest of exposition mod state :: ref (1, 1)
we model the file system state as a single label let state = ref 1

as shown to the right. The extension of the model to nested records is simple
but space demanding.

Examples of functions in the API are the rmdir function and its syn-
chronous sibling rmdirSync. Both will, given a path, remove the folder
pointed to by the path. In addition, rmdir also takes a callback that is called
with an error if the removal of the folder pointed to by the path fails.

mod rmdirSync :: a -> L +a {| 1 <- a |}
mod rmdir :: (a, #cb) -> L {| L <- a, #cb (L +a) ->b |}

We use the name a to represent the path and the abstract name cb to represent
the callback. From a modeling standpoint, we need to ensure that the level
of the path is propagated to the state, since removing the folder influences
the file system state. We can see this in the effect constraint 1 <- a, where
the label of the path is propagated to the label of the state. The success of the
operation is depending on the library state and the security label of the path,
1 + a. Where rmdirSync returns the result, rmdir communicates the result to
the callback as an argument, #cb (1 + a). The immediate return value of
the latter is undefined, regardless of the outcome of the operation and hence
labeled L.

A more complex function in the APl is createWriteStream that returns
a record. Calling createWriteStream with a path and an optional argument
that defines options (e.g. the encoding) returns a WriteStream.

mod createWriteStream :: (a, b)
-> { path D a
, bytesWritten : a + b + 1
, open : #op -> L {] #op (@ + b + 1) ->0 |}
, close t#cl -> L {] #cl (a+ b+ 1) ->c |}

}

The WriteStream has four parts; the fields path and bytesWritten, as well as
the events open and close. For the model of the returned record, the property
path is modeled by the argument a, which is the label of the path. The
property bytesWritten, which corresponds to the amount of bytes written
so far, is modeled as the least upper bound of a, b and 1, i.e., the path, the
options and the current library state. The events are modeled as functions
that accept (and store) callbacks — the event handler — as modeled by the
properties open and close. When the stream is opened or closed, the path,
the options and the current library state all influence the parameter to those
callbacks.

84 INFORMATION FLOW TRACKING FOR SIDE-EFFECTFUL LIBRARIES

To contrast the case study with the examples, note that Section 4 makes
the assumption that the source code of the library is available (albeit not sup-
porting the labeled semantics) whereas this section makes the assumption
it is not. Both cases are common, and can be modeled in our approach. In
case the source code is indeed available an interesting line of future work
is to look at the possibilities of automatically deducing models, e.g., using
something similar to summary functions [27].

6 Correctness

The correctness of the language is complicated by the fact that it is param-
eterized over a library model that defines how to marshal values between
the program and the library. Since we make no assumption on the imple-
mentation language of the library or the availability of the source code we
cannot reason about the correctness of the model w.r.t. the library. Instead
we assume the correctness of library models in terms of three hypotheses
used in the noninterference proof. The low-equivalence definition, the model
hypotheses and more information on the proof can be found in Appendix D
and Appendix E, respectively.

We prove noninterference assuming that the library model correctly
models the library as the preservation of a low-equivalence relation un-
der execution. Apart from covering a larger language, the proof improves
over [18] in two important aspects: 1) it significantly weakens the model
hypothesis, and 2) the proof has been formalized in Coq [20].

Theorem 4 (Noninterference of labeled execution).

([,3) ~ (I, %) A ¢,T E(Z1,e) = (32,0) A
oI (B e) = (35,0) = ([, 52) ~ (I, 55) A &~

Proof. By mutual induction on labeled and unlabeled evaluation (via u-Iclos
and l-uclos). The theorem makes use of confinement, i.e., that evaluation
under high security does not modify the public part of the environment. [J

7 Related work

Bielova and Rezk present a comprehensive taxonomy of information flow
monitors [4]. Some monitors [16, 15, 14, 3] and secure multi-execution [13,
12, 25, 6, 21] mechanisms have been integrated in a browser. Bichhawat et
al. instrumented the WebKit JavaScript interpreter [3]. While taking advan-
tage of the current optimizations in the interpreter, it loses the differentiation

7 RELATED WORK 85

between the program and library execution. FlowFox [13], which imple-
ments secure multi-execution (SME) [6], modifies the SpiderMonkey engine
in two ways: 1) augmenting the internal objects representing the JavaScript
context with a current execution level, as well as a boolean indicating if
SME is active, and 2) augmenting the internal representation of JavaScript
values with a security level. Unfortunately, API calls are only treated as
I/0 actions. JSFlow [16] is an information-flow aware JavaScript interpreter,
augmented with security labels on the JavaScript values. In order to allow
for libraries in JSFlow, deep hand-written models must be used, with reim-
plementation of the libraries as a result [15]. To allow for scaling, JSFlow
attempts to automatically wrap libraries, albeit in an ad-hoc manner. While
the correctness of simple examples are easy to see, the correctness and scala-
bility when passing, e.g., functions to and from the library remain unclear.
Bauer et al. [2] developed a light-weight coarse-grained run-time monitor for
Chromium, using taint tracking, to help reasoning about information flow in
a fully fledged browser. In this work, formal models of, e.g., cookies, history
and the document object model (DOM) are defined, as well as event handlers,
to model the browser internals and help prove noninterference. Heule et
al. [19] provided a theoretical foundation for a language-based approach
for coarse-grained dynamic information flow control, that can be applied
to any programming language where external effects can be controlled. A
first step for handling libraries in environments where dynamic information
flow control is not possible was taken by Hedin et al. [18], falling short by
not supporting references, and thereby not allowing for first-class mutable
state in combination with higher-order functions.

Findler and Feleisen’s higher-order contracts [9] address the problem
of checking contracts at the boundary between statically type-checked and
dynamically type-checked code. The problem relates to the problem of inter-
facing with libraries where it is impossible to check dynamic information
flow control. In particular, when considering function values crossing the
boundary, the compliance of such function values with their respective con-
tracts is undecidable. Findler and Feleisen proposed to wrap the function
and check the contract at the point where the function is called. This is
comparable to how we handle structured data, including references and
function values. A question for future work is if we can remove our abstract
identifiers for function values and references, and instead inject the unla-
beling /relabeling functionality using proxies, similar to how it is done in
higher-order contract checking [8]. If a contract is violated, the proper as-
signment of blame must be given [7, 11]. In static information flow checking,
the assignment of blame has been investigated by King et al. for information
flow violations [22]. Although our work can be seen as an application of dy-
namic higher-order contract checking for information flow contracts, we do

86 INFORMATION FLOW TRACKING FOR SIDE-EFFECTFUL LIBRARIES

not consider assigning blame. Indeed, runtime detection of a library which
does not obey the specified contract (i.e. the given model) is not possible in
this work.

8 Conclusion

Based on a central idea of a model heap, we have developed a foundation
for information flow tracking in the presence of libraries with side effects in
a language with higher-order functions, first-class state and lazy-marshaling
— three cornerstones of practical libraries. We have implemented a prototype
to verify the examples and performed a larger case study that shows that the
language is able to model key parts of a real file system library. In addition,
we have formalized the language and its correctness proof in Coq.

Future work includes support for model abstraction and application, and
dependent models. Thanks to the three cornerstones, we believe modeling
JavaScript objects does not require development of new theory, indicating
that it is possible to use this technique in tools like JSFlow.

Acknowledgments This work was partly funded by the Swedish Founda-
tion for Strategic Research (SSF) and the Swedish Research Council (VR).

9 Bibliography

[1] T. H. Austin and C. Flanagan. Efficient purely-dynamic information
flow analysis. In PLAS, 2009.

[2] L.Bauer, S. Cai, L. Jia, T. Passaro, M. Stroucken, and Y. Tian. Run-time
monitoring and formal analysis of information flows in chromium. In
NDSS. The Internet Society, 2015.

[3] A.Bichhawat, V. Rajani, D. Garg, and C. Hammer. Information flow
control in webkit’s javascript bytecode. In POST, 2014.

[4] N. Bielova and T. Rezk. A taxonomy of information flow monitors. In
POST, 2016.

[5] D.E.Denning. A lattice model of secure information flow. Commun.
ACM, 19(5):236-243, 1976.

[6] D. Devriese and F. Piessens. Noninterference Through Secure Multi-
Execution. In S&P, 2010.

[7] C.Dimoulas, R. B. Findler, C. Flanagan, and M. Felleisen. Correct blame
for contracts: No more scapegoating. In POPL, 2011.

9 BIBLIOGRAPHY 87

[8] C.Dimoulas, M. S. New, R. B. Findler, and M. Felleisen. Oh Lord, please
don’t let contracts be misunderstood (functional pearl). In ICFP, 2016.

[9] R.B.Findler and M. Felleisen. Contracts for higher-order functions. In
ICFP, 2002.

[10] File System | Node.js v9.2.0 Documentation. https://nodejs.org/api/
fs.html. accessed: Nov 2017.

[11] M. Greenberg, B. C. Pierce, and S. Weirich. Contracts made manifest.
In POPL, 2010.

[12] W. D. Groef, D. Devriese, N. Nikiforakis, and F. Piessens. FlowFox: a
Web Browser with Flexible and Precise Information Flow Control. In
CCS, 2012.

[13] W. D. Groef, D. Devriese, N. Nikiforakis, and F. Piessens. Secure multi-
execution of web scripts: Theory and practice. Journal of Computer
Security, 2014.

[14] D. Hedin, L. Bello, and A. Sabelfeld. Information-flow security for
JavaScript and its APls. Journal of Computer Security, 2015.

[15] D. Hedin, A. Birgisson, L. Bello, and A. Sabelfeld. JSFlow: Tracking
Information Flow in JavaScript and its APIs. In SAC, 2014.

[16] D. Hedin and A. Sabelfeld. Information-Flow Security for a Core of
JavaScript. In CSF, 2012.

[17] D. Hedin and D. Sands. Noninterference in the presence of non-opaque
pointers. In CSFW-19, 2006.

[18] D. Hedin, A. Sjosten, F. Piessens, and A. Sabelfeld. A principled ap-
proach to tracking information flow in the presence of libraries. In
POST, 2017.

[19] S. Heule, D. Stefan, E. Z. Yang, J. C. Mitchell, and A. Russo. IFC inside:
Retrofitting languages with dynamic information flow control. In POST,
2015.

[20] INRIA. The Coq Proof Assistant. https://cog.inria.fr/. accessed: Nov
2017.

[21] V. Kashyap, B. Wiedermann, and B. Hardekopf. Timing- and
Termination-Sensitive Secure Information Flow: Exploring a New Ap-
proach. In S&P, 2011.

https://nodejs.org/api/fs.html
https://nodejs.org/api/fs.html
https://coq.inria.fr/

88 INFORMATION FLOW TRACKING FOR SIDE-EFFECTFUL LIBRARIES

[22] D. King, T. Jaeger, S. Jha, and S. A. Seshia. Effective blame for
information-flow violations. In FSE, 2008.

[23] Mozilla Developer Network. Proxy. https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Global_Objects/Proxy. accessed:
Mar 2018.

[24] Mozilla Developer Network. RegExp. https://developer.mozilla.org/
en-US/docs/Web/JavaScript/Reference/Global_Objects/RegExp. ac-
cessed: Mar 2018.

[25] W. Rafnsson and A. Sabelfeld. Secure Multi-Execution: Fine-grained,
Declassification-aware, and Transparent. In CSF, 2013.

[26] A. Sabelfeld and A. C. Myers. Language-based information-flow secu-
rity. IEEE |. Selected Areas in Communications, 21(1):5-19, Jan. 2003.

[27] M. Sharir and A. Pnueli. Two approaches to interprocedural data flow
analysis. Program Flow Analysis: Theory and Applications, 1981.

[28] A. Sjosten, D. Hedin, and A. Sabelfeld. Information Flow Tracking
for Side-effectful Libraries - Full version. http://www.cse.chalmers.se/
research/group/security/side-effectful-libraries/.

[29] S. A. Zdancewic. Programming Languages for Information Security. PhD
thesis, Cornell University, 2002.

A Full syntax
e u=nl|x|if egthenegelseeg|letx=e1ines|funz=c|eses]

Xy | €1 Dea | Oe | head e | taile| e :ea|[]] (e1,e2)]| ()]

refel|le|{xz:e}|ex|e:=e|er;es|upgel

¢ 2= L|H

d == fun f(z)=c|letx=e

m = modz vy |lblx:k

k= L]alk ukg

v o= ()" [T 10—, O [ref(e,)" [{1} [{ea sy, - 3"
@ u= al#a® [(en,e2)* [[e]* [{}" [{a o on, .0}

C u=Ha—-pl|lk-#Ha—y|rbH#Hay—> |k a—k

0 =l | (01,00)" | O [FOL (D[RO {)

Ll |¢

~:
Il

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/RegExp
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/RegExp
http://www.cse.chalmers.se/research/group/security/side-effectful-libraries/
http://www.cse.chalmers.se/research/group/security/side-effectful-libraries/

B FULL LABELED SEMANTICS 89

B Full labeled semantics

lookupL(T", ¥, z) = ©

int
TTTEE) - (3l T GTE (S r) — (5,0)
o, IE(Z1,e1) = (Zg,0f) 01 #0
_ Sul,T = (Eq,e2) = (Xs3,02)
if-true
s, = (1, if e then eq else e3) — (3, 05)
. T E(Z1,e1) = (Zo,0f) v =0
_ Sul,T = (X2,e3) = (X3,03)
if-false
§,T = (X1, if e then ey else e3) — (X3, 05)
fun

S, (P p,) E (B, fun = e) — (3, Iclos(p, , €)*)

oI E(E,e1) = (82, FY) 6, (32,e9) — (X3, 01)

F(cul,T,X3,01) = (X4, 09)
o, T E (31,61 e2) — (34, 05)
.= (2,e) — ((6,0,5),0) pfresh
¢, T (3, ref e) — ((6[p — 1],0,5), (Iread(p), lwrite(p))*)
T E (Z1,e) = (32, (R,W)Y) R(s w1, %) = (33,9)
¢, T = (31,le) — (33,0%)
ST E(Sne) = (S (RW)) 6T (S2,e0) = (53,9)
W(ul,T,%3,0) =Xy
¢, I (31,61 :=e3) = (X4,0)
lookupU(T', X, s) =v lookupM(I',X,s) =~y vlpxvy=17
&, T E (%, sm) — (X,0)

deref

assign

lib

tupley

oDEE(0) - (205
o I'E (Z1,e1) = (22,01) ¢, (Zg,e2) = (X3,02)
&, T (31, (e1,e2)) = (Z3, (01,02)")
STE (e — (5,0)
&, (31, upg e £) — (X, 0°)
I (Z1e1) = (82,01) o, = (E,62) — (E3,02)
T (Z1,e15e2) — (35, 02)

tuples

label

sequence

90 INFORMATION FLOW TRACKING FOR SIDE-EFFECTFUL LIBRARIES

S, (p,ps p) = (E1,e1) = ((6,0,6),01) pfresh
Mt9(@£@wﬂ(mHm].j@%ﬂ&ﬁﬂ
S, (P p, P) (B, let & = ey in e3) — (Sg,02)
binop T (Ze1) = (Z2,07") o.T (Za,e2) — (Z3,05)

§7F '= (217 €1 @62) (237 (Ul @UQ)ZIUZ2)

S, 'l (¥1,e) — (¥2,0)
¢,): (21,@(3) - (227@@)

unop

record-empty

oTEEAD - @A
Vi.l<i<nanz22=qTEOe) > (S, 0)
s, T, {pi:er,... }) = (Sn,lproj({ p1 : 01,... HL)
o IE (S1e) = (32,0 O(cul,T,Ss,p) = (3,0)
5, = (21, e.p) — (Z3,0%)

,I'E (X1,e1) = (B2,01) <, T = (¥2,e2) — (3, 02)
6, (21,61 : e2) — (3,1cons(y, 02) L)

record-nonempty

projection

cons

nil

oPEE D) - &[5

T E (Z1,e) = (8o, (H, 1)) H(ulT,%) = (3s,0)
6, = (21, head €) — (Z3,0%)

T E (31,e) > (89, (H, 1)) T(cut,T,%y) = (3s,0)

§,F 'Z (El, tail 6) - (23’,[)4)

head

tail

We will now explain the remaining evaluation relations which are not
explained in Section 3.

Tuples (tuple; and tupley) are always labeled L. If the tuple is non-
empty, the two expressions in the tuple are evaluated, and their resulting
values returned (tuplez). When using the keyword upg, the value will be
raised to the given label ¢ (1abel), and evaluating multiple expressions in se-
quence evaluates the first expression e;, and uses the modified environment
when evaluating ey, with the final value in the sequence being the returned
(sequence). With let bindings (let), the bound expression e; is evaluated. The
labeled heap is updated with a new frame, where the value of the evaluation
of the bound expression is stored. This new environment is then used when
evaluating the body e,. Evaluation of binary operators (binop) evaluates

B FULL LABELED SEMANTICS 91

both expressions, and then applies the binary operator to the result. The
result is then raised to the least-upper bound of the two operands. Unary
operators (unop) are evaluated similarly, but with only one operand.

In order to trap interaction with the different properties of a record,
records are represented as functions O : (¢,I,%,p) — (%,9). Creation
of a record is done in two ways: it is either an empty record, labeled L
(record-empty), or it is a function (record-nonempty) which, given the map-
ping between properties and values, is defined by lproj as follows.

Iproj(rec) = (¢, T', X, id). Ifind(T", 3, rec, id)
where
Ifind(T, X, { },4d) = (%,())
Ifind(T, X, { p : 0, rest },id) = {(2.],11), ifp=id) .
Ifind(T', X, { rest },id) otherwise
When projecting a record property (projection), the projected property p
is applied to O along with the current execution environment, which uses
Ifind to find the corresponding labeled value. Creation and interaction with
a library record, O : (¢,T', 3, p) — (%, v) is analogous.

A list is a pair of functions, representing a cons cell. One function is for
reading the head of the list, / : (s,T', %) — (%, 0), and one for reading the
tail of the list, T : (¢,I', %) — (%, 0). A list can be created in two ways. Either
the list is empty (nil), and it will be labeled L. Or the list is non-empty (cons),
and the two given values (the head and tail of the cons cell) will be wrapped
using lcons to allow for delaying computations as follows.

leons (i1, 62) = (A(¢, T,). (2,91), A<, T, 2). (£, b))

Reading the elements of the list is done by the primitives head and tail (rules
head and tail), which will call H and 7T for the head and tail respectively.
Upon interaction with H and 7', the current execution environment is passed,
with the context while evaluating the head or tail function being the least-
upper bound of the current context and the label of the cons cell. Creation
and use of a library list, H : (5,I,X) — (X,v) and T : (5,I',X) — (X, v), is
analogous, apart from the fact that there is no cons cell label, making the
evaluation of H and 7" occur in the current execution context.

B.1 Marshaling

Primitive values Integers and tuples are eagerly marshaled. The unlabel
and relabel models follow the structure of the value, which is fully taken
apart in order to construct the labeled or unlabeled counterpart.

92 INFORMATION FLOW TRACKING FOR SIDE-EFFECTFUL LIBRARIES

Unlabeling. Unlabeling an integer n‘, based on an unlabel model a will
bind the label ¢ to the name « in the model heap. Unlabeling of the empty
tuple is performed structurally in an analogous way, while unlabeling a
non-empty tuple first unlabels the components before binding ¢ to the name
a. When unlabeling the two components of the tuple, the updated heap
from unlabeling the first component is used when unlabeling the second
component. Similarly, it is the updated heap from unlabeling the second
component that is used to bind ¢ to a.

nt lers a (updateM(s,T', ¥, a, £), n)
O)f lers a (updateM(c,T', ¥, o,), ()
(f)lv 62)6 iC,F,El (9017 902)(1 = (updateM(g, Fv 237 a, f), (vlv 1)2))
where (Zo,v1) =1 ey, 01
(X3,v2) = U2 1,5, ©2

Relabeling. Relabeling an integer interprets the label term, x, in the given
environment. A tuple is relabeled structurally, by relabeling the components
and the tuple itself.

n TF,E K n[[“]]r,z:

() 1rsk = () Ixlr =
(v1,v2) Trs (71,72)" (v1 Tr.g 71,02 Trs 7o) Iles

Records When marshaling a record, it is important that only the used
properties of a record affects the model state when going back and forth
between the program and the library.

Unlabeling. As a record can be either empty or non-empty, there are two
unlabel models for records. The unlabel model for an empty record is { }¢,
whereas a non-empty record has { a1 : ¢1,...}*, where each property
is given a separate unlabel model. When passing a program record to the
library, the model heap must be altered, by defining the name « to point to
the label £, which is the program record’s structure label.

() Lors () = (defineM(T', %, ,0), { })
O L ppiysn {1 = 1,00 > =)
(defineM((p, p, p), &, a, £), u-Irec(O, £, p,{ a1 : ¢1,...}))

The translation of the program record is performed by u-Irec, which takes
the program record, the label of the program record, the model frame pointer
stack, and the unlabel models for the properties.

B FULL LABELED SEMANTICS 93

u-lrec(0, 4, { a1 : P1,--) = Al (g 2:5,):%1,p). (83,0)
where (X2,9) = O(cu £, (p, p,p,): X1, p)
e =mfind({ a1 : ¢1,.. } p)
(23,1}) =0t lcu[,(é,g,ﬁz),Eg '

When the resulting library record is interacted with, the original program
record is used to get the labeled value corresponding to the property p. The
function mfind is then used to get the unlabel model ¢ corresponding to the
property p from the record unlabel model, which dictates how to unlabel the
labeled value for property p.

if p=id
mfind({ p : m,rest },id) = m’.l p=t . .
mfind({ rest },id) otherwise

Due to the structure being the same for record unlabel models and record
label models, mfind is generic and will be used both when unlabeling and
relabeling a record. Finally the labeled value corresponding to the property
p is unlabeled with the unlabel model returned from mfind, using the old
model frame stack p,.

Relabeling. Relabeling a record follows the structure of the record: it is either
an empty record, or a record with properties.

{} o () = ()0
O1sppp {P1 2 M, ..} =lurec(O,p,{p1 : m,... }")HKH(5:0:8),

If the library record is empty, an empty program record is returned, with
the label of the interpretation of the label term « in the current environment.
However, if the library record is non-empty, the auxiliary function l-urec is
used, and takes the library record, the current model frame pointer stack,
and the relabel model of the record. The resulting program record from
l-urec is labeled with the interpretation of .

l—ureC(O,éz, {p1:m,...}) = s, (pp, Bl) 21,p). (B2,0)

where (32,v) = O(s, (p, p, 31) ¥1,p)
v =mfind({ p1 : 7,...},p)

0=0"T005,)5 7

When the resulting program record is interacted with, library record is used
to get the unlabeled value corresponding to the property p. The resulting
unlabeled value is then relabeled with the relabel model , corresponding to
the relabel model returned from mfind for property p in the record relabel

94 INFORMATION FLOW TRACKING FOR SIDE-EFFECTFUL LIBRARIES

model. As with unlabeling of records, the relabeling of the value takes place
with the old model frame stack f,, bound when the relabeling was first
initiated.

Lists Lists are marshaled using lazy marshaling, which dictates only the
traversed elements of the list should affect the unlabeling and relabeling of
a list.

Unlabeling. A library list is unlabeled as a value, translating the head and tail
functions to its unlabeled counterpart, as well as updating the cons cell label
in the model heap.

[] lc r,x [Sp]a = (updateM(gv I3, a7€), [])
(H, 1) lors [¢]* = X)
(updateM(,T', X, o,), (u-lhead (H, £, j, o), u-ltail(T', £, j, [¢]*)))

The translation of a non-empty list is performed by translating the head and
tail functions independently. H is translated by u-lhead, which takes the
program head function, the label of the cons cell, the current model frame
pointer stack, an the unlabel model for unlabeling the program value that
corresponds to the head of the list.

u'lhead<ﬁa€7é2a4p) =)‘((p7 pap)721)- (2377))
where (227 A) H(gl—lgv (pap7161)721)

(3,0) = o* igue,(é,g,é2),22 ®

When the resulting library head function is called, the program head function
H is used to get the corresponding labeled value, while being executed in
the security context of the least upper bound of the current security context
and the label of the cons cell. The resulting labeled value must be unlabeled
w.r.t. the unlabel model ¢ using the model frame pointer stack p,, which
was bounded when the marshaling process started before being returned to
the library.

Similarly, the program tail function T is translated using u-ltail, which
takes the program tail function, the label of the cons cell, the current model
frame pointer stack, and the unlabel model of the entire list, as the tail of a
list is a list.

u_ltaﬂ(Ta 67 ﬁQ’ []O() = ?‘(ga (é él)’ 21) (237U)
where () T(é é787é1)a El)
(237) '& 7£,é2),22 [QO]OL

As with unlabeling of H, when the resulting library tail function is interacted
with, the program tail function is used to get the corresponding labeled value.

B FULL LABELED SEMANTICS 95

Since evaluating the program tail function can result in either the empty
list [| or a new pair (H’,7"), the full unlabel model [¢]* must be passed
to u-ltail. The corresponding labeled value is then unlabeled with the old
model frame pointer stack j,, and the resulting library value along with the
updated memory gets returned.

Relabeling. When relabeling a library list, the library list is translated into a
program counterpart.

(110 ()" = [0
(H,T) T (p.p.p) [7]" = (lruhead(H, p,), l-utail(T', p, [v]"))II 1.0,

The case for the empty list is simply interpreting the label term « in the cur-
rent model state, and the corresponding label is used for labeling the empty
program list. When relabeling an unlabeled cons cell, (H, T"), each function is
relabeled separately, with the corresponding program cons cell being labeled
with the interpretation of & in the current model state. Translating the library
head function H is done by l-uhead, which takes the library head function,
the current model frame pointer stack and the relabel model for the value
corresponding to the head of the list.

l-uhead(H, j,,7) = A(s, (D,) Z1)- (X2, 0)
where (32,v) = H(S, (p, p, p,), 1)

0= V505,52 7

The resulting program head function, when interacted with, takes the current
execution environment as parameter. The library head function H is then
used to calculate the unlabeled value, which is then relabeled with the
element relabel model v with the old model frame stack Doy

Relabeling of the library tail function T is done in a similar fashion, using
l-utail, which takes the library tail function, the current model frame pointer
stack and the list relabel model.

l_utaﬂ(TvéT[]))‘(v(p7pvp1)a21)' (227@)
where (EQa) ((pvﬁ B)72)
V=0 T 5’8’32)722 |:’y]N

When the resulting program tail function is interacted with, the library tail
function T is used to calculate the unlabeled value. As with unlabeling a
program tail function, the resulting value from T can be either an empty
list [], or a new pair of functions (H’,T”). This unlabeled value is relabeled
using the list relabel model [7]* with the old model frame pointer stack p,.

It is due to trapping the interaction using the head and tail functions that
allow for the lazy marshaling. This lazy marshaling in turn ensures only the
traversed elements of a list will affect the resulting labels.

96 INFORMATION FLOW TRACKING FOR SIDE-EFFECTFUL LIBRARIES

C Full unlabeled semantics

. lookupU(T', £, z) = v
TTTEED) e (®n) 7 T (S0) v (50)
S, Il (B1,e1) vwo (B2,v1) v1 #0
¢, I (X2, e2) v (E3,02)
¢, I [|= (21, if e1 then eg else e3) v (X3, v2)
. IE(X1,e1) v (B2,v1) 01 =0
¢, ' (B2, e3) vwo (X3,v3)
¢, I'[|= (21, if e1 then ey else e3) v (X3, v3)

if-true

if-false

fun

S, (P p,) = (B, fun x = e) v~ (3, uclos(p, z, e))

¢, I’ ': (21,61) > (EQ,F)
(,F ': (22762) (237’01) F(g,F,Eg,Ul) = (24,1}2)

we ¢, I’)Z (21,61 62) (24,’02)
o ¢, = (3,e) v ((6,0,0),v) pfresh
T E (3, ef €) o (3, 0[p — 0], 5), (uread(p), uwrite(p)))
deref ¢, I' ': (21’) (22 ()) R(g,F,EQ) = (23,’0)

C,F'Z(El,!e) (23,1))

<7F): (21761) > (227 (Rv W)) §,F): (22562) e (23,1})
W(QF, 23,7)) = 24

assign o, I (21,61 := e3) v (X4,0)
PETTEE ()~ (2.0)
ropte o, TE(E1,e1) v (B2,v1) 6,7 | (22,e2) v (B3, 02)
’ ¢, I'= (21, (e1,e2)) v (E3, (v1,v2))
sequence §7F)= (21,61> MAS> (22,1}1) §,F)= (22,62) Naed (23,?}2)

¢, T (X1,e15e2) v (E3,02)

0, P) E (B1,e1) v ((6,0,6),v1) pfresh
0P, p) E((6,0[p— v1],6),e2) v (X2,v2)

(0,0, P) E (X1, let x = ey in ez) v (B2, v2)

D LOW-EQUIVALENCE 97

S, ' (X1,e1) o (B0,01) 6, = (32, 62) v (X3, 02)
¢, T (1,61 Der) v (Z3, (11 D v2))
¢, I’): (21,6) hig (EQ,U)
¢,T ': (21766) e <227®U)

record-empty

binop

unop

oEE) (E,{})
Vi.l<i<nanz=22=q¢TkE(3,e) > (Zig1,v:)
I'=(E,{p:e1,... }) = (S, uproj({ p1 : v1,... }))
o, I'E (Z1,e) w> (22,0) O(,T,3s,p) = (X3,0)
¢, T = (21, e.p) v (33,0)
o, T'E (Z1,e1) v (Za,v1) ¢, T | (g, e3) v (X3, 02)
¢, I'[= (21,1 : e2) v (33, ucons(vy, va))

record-nonempty

projection

cons

nil

oEGE[]D) &[]
¢, T ': (2176) b (227 (H7 T)) ((T, 22) = (23,1))
¢, I' = (X1, head €) v (23,0)

¢, I’): (2176) hiied (227 (H7 T)) ((T, 22) (Eva)
§,F ’: (21, tail 6) (23,)

head

tail

D Low-equivalence

Low-equivalence for labeled values, ¢ ~ ¢/, encodes the intuition that public
values should be equal. Two environments are low-equivalent, (I', X) ~
(I, ") if both the labeled stack and labeled heap and the model frame stack
and model heap are low-equivalent. Low-equivalence is defined as follows.

OF~0OF [IF~[]" lcons(or, b5)* ~ lcons(&, i)~

AeH
(s

(l-uhead(H,é,’y,L) lutall(T p, [, L)) ~
(l-uhead(H', §',v, L), l-utail(T”, ¢, [v]", L))

98 INFORMATION FLOW TRACKING FOR SIDE-EFFECTFUL LIBRARIES

Iclos(p, , e)

l-uclos(F, p, (¢ — 7, (), L

(Iread(p), Iwrite(p)) X ~ (lread("), lwrite(p')) "

(l_uread(Rv éera L),l—write(W /.).7 T@f((,@ ’Y) L)) =
(I-uread(R’, ¢, v, L), 1-write(W’, 5, re f (p,7), L))

pzp p~p p=zp p=p
[1=T] pp~p-p pp=pi - b~ 0
Ve . (O] =0 Ad[z] =0 A0 ~d) v (@z]=LAd[z]=1)

O~w
p=p Vpp . p=p = olpl =[] pp
Vp,pppy b= 6[p] ~ &' []

V1 XL U] Vg p V)
n~rn V1 =H U (v1,v2) ~p (v, vp)

~ - ~/ ~/
V1 =~ Vg V] =~ Uy

()~ () [1=~c]] ucons(vy, v2) ~r, ucons(vy, vh)

o/

H~H T~T p=p
(ulhead(H", j,), u-ltail(T", j, [¢]*)) ~1
(u-Thead(H'", j',), u-ltail (T, ', [£]*))

uclos(p, z,e) ~p, uclos(p’, z,e)
F~F
u-lclos(F, 7, L) ~p, u-Iclos(F", m, L)

E CORRECTNESS 99

(uread(p), uwrite(p)) ~, (uread(p’), uwrite(p’))
R~R W=~W
(u-lread(R, 7, L), u-lwrite(W, 7, L)) ~p,
(u—lread(ﬁf’, m, L), u—lwrite(W’, 7, L))

E Correctness

The correctness of the language is complicated by the fact that it is parame-
terized over a library model that defines how to marshal values between the
program and the library. Noninterference is only guaranteed given that the
library model correctly models the behavior of the library. We handle this by
assuming the correctness of the library model in terms of three hypotheses.

The first hypothesis deals with the possibility of relabeling the unlabeled
values of the library. It makes use of a non-standard low-equivalence relation
for unlabeled values, v ~, v/, that expresses that v and v’ are low-equivalent
w.r.t. label £. The hypothesis states that the result of evaluating an expression
in the unlabeled semantics returns values that can be correctly labeled with
some label. The existential abstracts the fact the model selects the label, and
the assumption the label is correct.

Hypothesis 1 (Labelability of unlabeled execution).

(1,%1) =~ (IT,%) A 6, T = (Z1,e) = (Z2,0) A
oIM = (Bhe) = (Bhv) = 3. v~ o

Even though the hypothesis speaks about all expressions it should be
understood in relation to where it is used: when the labeled semantics
explicitly calls the library.

The second hypothesis states that the result of relabeling two labelable
unlabeled values is low-equivalent, regardless of the relabel model or model
state. This hypothesis expresses the assumption that the library model is
correct.

Hypothesis 2 (Unlabeled correctness of library models).
CE) 2T Ao Avfrsy=0 AV g y=0=0~0

The third hypothesis states that the library model correctly models pro-
gram callbacks and side effects.

100 INFORMATION FLOW TRACKING FOR SIDE-EFFECTFUL LIBRARIES

Hypothesis 3 (Labeled correctness of library models).

([,3) ~ (I,%) A ¢,T E(Z1,e) = (Za2,v) A
§>F/ |= (leve) - (2/2’U1> = (F7 22) = (F/’zé)

The three hypotheses are used in the proof, when values are passed from
the library to the program.

For the remainder of this section, we will further explain some of the
key concepts and discuss some limitations of the Coq formalization. The
formalization can be obtained at [28].

Records. The implementation of records can be seen as a generalization of
lists. To keep the formalization reasonably maintainable, we have opted to
exclude records. Lists are part of the formalization and suffice to establish
the compatibility of lazy marshaling and the model state.

Noninterference. We prove noninterference as the preservation of low-equivalence
under execution.

Theorem 1 (Noninterference of labeled execution).

(T,%1) = (I",%) A 6, TE (Z1,e) = (82,0) A
C’F/ ': (Ellve) - (Eév@l) = (F722) = (F',Zé) A Dy v

In addition to confinement the noninterference proof uses noninterfer-
ence results for basic primitives like lookupL, lookupU, and lookupM as
well as form updatel, updateU and updateM. Those constructions are en-
tirely standard, and has been proved correct in previous work [18]. We have
chosen to admit their proofs of noninterference in the formalization. For the
major constructions of the labeled semantics — values, lists, higher-order
functions and references as well as the evaluation relation and the unlabel
and relabel functions — noninterference has been formally proved.

Confinement. Confinement expresses that execution under secret control does
not modify public parts of the environment. As is common we express
confinement in terms of the low-equivalence relation.

Lemma 2 (Confinement of labeled execution).
(F,El) ~ (F,El) A H,F)= (21,6) - <227i}) = (F,21> >~ (F, 22)

Confinement uses confinement results for basic primitives like lookupL,
lookupU, and lookupM as well as form updateL, updateU and updateM.
Those constructions are entirely standard, and has been proved correct in
previous work [18]. We have chosen to admit their proofs of confinement in

F HEAP OPERATIONS 101

the formalization. For the major constructions of the labeled and unlabeled
semantics — values, lists, higher-order functions and references as well as
the evaluation relation and the unlabel and relabel functions — confinement
has been formally proved.

Low-equivalence. Low-equivalence with heap allocated values either requires
the heap to be split into a public and a secret part or perform the correctness
argument up to isomorphism of the low-reachable parts of the heap. We
have opted for the latter, since it requires no modifications of the semantics.
However, reasoning up to bijection on two heaps requires that two bijections
are maintained and pushed throughout the proof, which significantly in-
creases the proof burden and drenches the core of the proof in unimportant
details. To handle the bijections are entirely standard and has been done
formally by Hedin and Sands [17] in their work on opaque pointers. For this
reason we have decided to axiomatize the handling of the bijections, while
maintaining them in the low-equivalence relation to make the interaction
between the frame stacks and the corresponding heaps clear.

In addition, the noninterference proof makes use of symmetry, transitivity
and conditional reflexivity of the low-equivalence relation. The relations
clearly satisfy these properties, why we have admitted their proofs.

F Heap operations

csls AT A _ s
lookupL1 zealpl olpllz] =2

IOOkupL((éﬁ,é),((},g,(})ax):{)
x¢a[p] lookupL((p,p,p),(6,0,6),x) =17
lookupL-2 lookupL((p - p, p, p): (6,0,5),2) = 0
realp] olp]lz] =v
lookupU'l lookupU((ﬁa PP p)? (6 0—7& ’I) =v

r¢olp] lookupU((p,p

lookupU-2 £
lookupU((p, p - p, p), (6,0,5),2) =v
vedglp] olp]lz] =9
lookupM-1
T lookupM((p, p. -), (6,0,5),x) = ¥
r ¢ 5[p] lookupM((p, p, p), (6,0,6),x) =i
lookupM-2 ——

lookupM((p, p, 4+ p), (6,0,5),)

102 INFORMATION FLOW TRACKING FOR SIDE-EFFECTFUL LIBRARIES

z € 5[p]
flI'ldM((é, B, p . B)7 (OA—? g, 0)7 il?) = p

v ¢ 5[5 findM((p.p. p), (6.0.5),2) =

findM-1

findM-2 —
" findM((p, p, /-), (5,0,5),2) =
findM-3
" findM((p, p, D), (6,0,5),) = L
ﬁndM((ﬁa P p ! p)7 (67070)70‘) =1
dateM-1 — —
PN updateM(s, (5, p, - D), (6,36, 0, 0)

ﬁndM((p7 PP) (0 a, 0)) =p U[p]

dateM-2
PN pdateM(<, (p, p. 7). (6,0,6), . £) = (6,0, 6[p][a — £ L £])

a ¢ 5[p]
defineM((p, p,p - p),(6,0,6),a,0) = (6,0,5[p][a — ©])

defineM

F HEAP OPERATIONS 103

Paper 111

Essential FP: Exposing the Essence of
Browser Fingerprinting

Alexander Sjosten, Daniel Hedin, Andrei Sabelfeld

Under submission

105

1 INTRODUCTION 107

Abstract

Web pages aggressively track users for a variety of purposes from
targeted advertisement to enhanced authentication. As browsers move
to restrict traditional cookie-based tracking, web pages increasingly
move to tracking based on browser fingerprinting. Unfortunately, the
state of the art to detect fingerprinting in browsers is often error-prone,
resorting to heuristics and crowd-sourced filter lists. This paper presents
EssentialFP, a principled approach to detecting fingerprinting on the
web. We argue that the pattern of (i) gathering information from a wide
browser API surface (multiple browser-specific sources) and (ii) com-
municating the information to the network (network sink) captures the
essence of fingerprinting. This pattern enables us to clearly distinguish
fingerprinting from similar types of scripts like analytics and polyfills.
We demonstrate that information flow tracking is an excellent fit for ex-
posing this pattern. To implement EssentialFP we leverage, extend, and
deploy JSFlow, a state-of-the-art information flow tracker for JavaScript,
in a browser. We illustrate the effectiveness of EssentialFP to spot finger-
printing on the web by evaluating it on several categories of web pages:
analytics, authentication, bot detection, and fingerprinting-enhanced
Alexa top pages.

1 Introduction

Web pages aggressively track users for a variety of purposes such as targeted
advertisement, enhanced security, and personalized content [54]. Web track-
ing is subject to much debate [40, 25] that, in the light of privacy-enhancing
legislation [18], has led the major browser vendors to introduce anti-tracking
measures.

From cookies to fingerprinting To keep track of users a unique identifier
was traditionally stored in a cookie. However, in the face of growing aware-
ness of privacy concerns (e.g., the “do not track” flag [39]), a study by Yen
et al. showed 32% of the users could not be completely tracked using only
cookies [90].

Increasingly, web pages have been moving to collect browser fingerprints,
“information related to a user’s device from the hardware to the operating
system to the browser and its configuration” [69]. Mayer showed in a small-
scale study that 96.23% of users could be uniquely identified by combining
seemingly benign browser features. Eckersley then showed in a large-scale
study that by combining information such as the screen dimensions, the user
agent and the installed browser plugins it was possible to uniquely identify
83.6% of the tested browsers looking at only eight attributes (increased to
94.2% if the browsers supported Flash or Java) [53].

108 ESSENTIALFP: EXPOSING THE ESSENCE OF BROWSER FINGERPRINTING

Recent studies show that (i) browser fingerprinting is becoming increas-
ingly prevalent [44, 54]; (ii) modern technique include hardware fingerprint-
ing through the Canvas [73] and WebGL [73, 50] APIs; and (iii) on average, a
fingerprint can track a browser instance for 54.48 days [89]. From analyzing
newer data, researches have also shown that the number of uniquely identi-
fiable users based on the fingerprint has gone down, but that modifying a
few features of the fingerprint very probably makes it become unique [57].

Privacy-violating fingerprinting As with tracking in general, web pages
fingerprint users for a variety of purposes. To thwart the privacy-violating
fingerprinting efforts browser vendors have introduced mitigations, which
include randomizing the output of known fingerprinting vectors by Brave [41],
using privacy budgets by Chrome [29], blocking third-party requests sus-
pected of being tracking related by Edge [24] and Firefox [17] based on,
e.g., the Disconnect list [13], and making more devices look identical by Sa-
fari [35]. The diversity of these techniques reflects that they each come with
their pros and cons, with no clear principle on how to detect fingerprinting.
This reflects in large numbers of both false positives and negatives [2, 3, 4, 5].

In addition to browser vendors taking responsibility in limiting track-
ing and fingerprinting, a user can install browser extensions like Privacy
Badger [30] or Ghostery [19] to help block privacy-intrusive scripts. These
extensions use filter lists, which are collections of rules dictating what should
be blocked. When generating the filter lists, a large number of community
members usually collaborate in identifying undesirable resources, a pro-
cess known as crowd-sourcing. A canonical example of such a list is the
above-mentioned Disconnect list [13]. While this approach is popular, it has
the obvious limitation: as fingerprinting scripts are discovered and labeled
as such, the attacker has the possibility to easily evade the blacklisting by
cloning scripts and serving them from different Internet domains [51].

Recent research approaches to limit fingerprinting include randomization
of features [75, 68, 87], modifying the fingerprint per session [86, 55], and
making users look identical through virtualization [70, 56]. Yet making every
user look unique or making users look identical to prevent fingerprinting
also breaks techniques that use fingerprinting to improve security, e.g., to
make authentication stronger [67]. We discuss these and further related
approaches in Section 6.

Generally, while the above approaches focus on solving the problem
for specific vectors, they fall short of addressing the general case: there is
currently no uniform solution for identifying fingerprinting. This leads us to
our first research question: RQ1: What is the essence of browser fingerprinting?

“Bad” vs. “good” fingerprinting What makes the problem of fingerprint-
ing intricate is that not all fingerprinting is “bad” fingerprinting [69]. Indeed,

1 INTRODUCTION 109

fingerprinting can be justified to increase security when used to improve e.g.
bot detection, fraud detection, and protection against account hijacking [45].
Where to draw the line between “bad” and “good” fingerprinting is an open
and arguably subjective question. Approaches that try to draw this line are
bound to result in both false positives and negatives.

The stance of this paper is thus neutral: we focus on identifying the
presence of fingerprinting, hence providing necessary input into the decision
process (by the user and browser) on whether to allow it. This motivates our
second research question: RQ2: How do we reliably expose fingerprinting scripts
in a principled way, without relying on ad-hoc heuristics and crowd-sourcing, while
at the same time not having to judge the fingerprinting as “bad” or “good”?

Fingerprinting Our key observation is that the essence of fingerprint-
ing can be captured by the pattern: (i) gathering information from a wide
browser API surface (multiple browser-specific sources) and (ii) communi-
cating the information to the network (network sink). The communication in
(ii) may either be direct (via, e.g., XMLHttpRequest) or indirect (via, e.g., the
cookie) and may be done by sending the raw data piece by piece or (more
commonly) as a precomputed fingerprint.

One natural start for semantic detection of fingerprinting is with the
gathered information, i.e, the API surface accessed by fingerprinting code
(the API imprint). If the information that escapes the browser has a significant
overlap with the API imprint this may be indicative of fingerprinting. The
flow of information is key to reliable detection: we must track how informa-
tion flows from the API imprint to the network sinks. It does not suffice to
compare an application’s API access pattern to the API imprint due to the
risk for false positives (every use of the API would count towards finger-
printing). In particular, in the presence of polyfills, the API access patterns of
applications naturally become rather large, thus increasing the risk of false
positives significantly. (Polyfills, such as Modernizr [26] and core-js [11], are
libraries intended to extend older browsers with support for new features.
To be able to do this they probe and enhance the execution environment by
injecting any missing features.)

Based on this, we propose EssentialFP, a principled approach that utilizes
dynamic Information-Flow Control (IFC) as a means to expose fingerprinting.

Lightweight information flow control There are various forms of IFC, all
sharing the same fundamental concept but differing in how information is
tracked and what security guarantees they provide. We refer the reader to
[77, 62] for more background on various flavors of IFC. Essential FP utilizes
a variant of dynamic IFC known as observable tracking [48, 83]. In dynamic
IFC all values are given a runtime security label computed to reflect the
information used in the construction of the value. This is done by tracking

110 ESSENTIALFP: EXPOSING THE ESSENCE OF BROWSER FINGERPRINTING

two types of information flows. The first kind of flow, the explicit flows,
correspond to data flows [52] in traditional program analysis. An explicit
flow occurs when one or more values are combined into a new value (Note
that copying a value is a special case of this.), e.g., when adding two numbers.
c = a + b;. After execution, the value stored in c is the sum of the values
stored in a and b which is reflected by letting the label of the value of c be
the join of the labels of the values of a and b.

The second kind of flow, the implicit flows, corresponds to control flows
[52] in traditional program analysis. Implicit flows arise between values
when one value indirectly influences another via the control flow of the
program. Consider the following program

if (a) { b = true; } else { b = false; }

where the value of b is indirectly influenced by the value of a, since it controls
which branch is taken and, hence, which assignment is executed. Assuming
a is a boolean variable, the above implicit flow is equivalent to the explicit
flow b = a; and the label of the value of b must be computed to reflect this
flow of information. To track implicit flows observable tracking maintains
a security label associated with the control flow, the so-called pc label. This
label is used to ensure that any values influencing the control flow are taken
into account when computing the labels of side effects.

Implicit flow are not of theoretical importance only [63, 83]. Unless im-
plicit flows are tracked, important flows are potentially missed. Consider
the following code taken from Fingerprint]S:

var getNavigatorPlatform = function (options)
{
if (navigator.platform) {
return navigator.platform
} else {
return options.NOT_AVAILABLE
}
}

In case navigator.platform is present, there is an observable implicit flow
from it to the return value of the function. This code from Fingerprint]S
represents a common pattern, where the link between the original API
source and the sink would be lost in the negative cases.

Given this, observable tracking is an excellent match to capture the
essence of fingerprinting. To track how information flows from the API
imprint to the network sinks we label the values originating from the API
imprint with their access paths and capture (the accumulation) of labels
exiting the browser via network sinks. The observable tracking ensures that
the flow of information internal to the program correctly reflects any flow of
information from the API imprint to the network.

1 INTRODUCTION 111

Metrics via aggregated labels To detect fingerprinting we accumulate the
labels that reach each of the network sinks and compare the result against a
baseline API imprint computed from the API imprints of three major open-
source fingerprinting libraries to find the largest sink. The overlap between
the largest sink and the API imprint gives us how large part of a full finger-
print that escapes the browser to the fingerprinting party. The hypothesis
is that fingerprinting applications have a larger overlap than other non-
fingerprinting applications. In addition, we also gather all internally created
labels. This set of labels represent the values created during executions and
allows us to detect whether the script itself compiles information from the
baseline API imprint into one value, i.e., a fingerprint. Having information
on how much fingerprinting information that reaches the API and if this
information was compiled by the page or sent piece by piece allows us to
gain further insights into how fingerprinting operates in the wild.

Implementation and evaluation Our approach leverages JSFlow [61, 60,
59], a state-of-the-art dynamic IFC monitor for ECMA-262 version 5. We
extend JSFlow to handle libraries not natively supported by ECMA-262
version 5 and modify Chromium to use JSFlow to execute scripts instead
of V8. The resulting browser, EssentialFP, allows us to visit pages while
tracking and collecting data about the flows of information on the page.

A large-scale evaluation on thousands of web pages is not in scope of
this work because our focus is on providing a platform for experimenting
with and deep understanding of JavaScript on web pages. To evaluate the
approach we have selected a number of web pages divided into four cate-
gories: 1) pages that do analytics, 2) pages that do authentication, 3) pages
that do bot detection, and 4) pages that do fingerprinting. Each of those
pages was then executed using EssentialFP and the collected data analyzed
w.r.t. the baseline API imprint. Our results show a clear distinction between
the analytics category and the fingerprinting category of pages where finger-
printing pages reach scores of 20% and above, while all analytics pages fall
well under 20%. For bot detection and authentication the results are more
subtle due to variations in how much fingerprinting is used to enhance the
security.

Contributions In summary, this paper offers the following contributions:

(i) We develop EssentialFP a principled approach to fingerprinting detec-
tion based on observable tracking (Section 2). We define the sources
and sinks and design a metric that allows us to characterize finger-
printing patterns via aggregated labels.

112 ESSENTIALFP: EXPOSING THE ESSENCE OF BROWSER FINGERPRINTING

(if) We present the design and implementation of EssentialFP to allow
JSFlow to track information within web APIs, and how to track label
combinations of known fingerprinting patterns (Section 3).

(iif) We present an empirical study, where we visit web pages based on
different categories (analytics, authentication, bot detection, and fin-
gerprinting Alexa top pages), demonstrating the effectiveness of Es-
sentialFP (Section 4).

The code of our tool and its benchmarks are available to the reviewers
online [14]. We will release them publicly upon publication.

2 Approach

Based on our observation that the essence of fingerprinting can be captured
by the pattern of (i) gathering information from a wide browser API surface
(multiple browser-specific sources) and (ii) communicating the information
to the network (network sink) we suggest detecting fingerprinting by using
a variant of dynamic IFC known as observable tracking. Observable tracking
uses runtime values that are labeled with security labels. The labels are
combined during execution to reflect the flow of information in the pro-
gram. In brief, our approach relies on the computation of a baseline API
imprint capturing all parts of the API that contain fingerprinting-sensitive
information, but instead of comparing it to the API access pattern of the
application we track the accumulation of fingerprinting-sensitive informa-
tion at the network sinks. This is done by labeling any information that
originates from the baseline API imprint with the access path, causing all
fingerprinting-sensitive information to carry its origin as a security label.
During the execution, the observable tracking ensures values that reach the
network sinks are correctly labeled to reflect the information that was used
in their creation. The labels of the escaping values are then accumulated
for each network sink and compared to the baseline API imprint to detect
the presence of fingerprinting. In our case, the label analysis is done after
the execution of the page, but nothing prevents a runtime solution where
information would be allowed to escape until a certain threshold has been
met. Such a solution would be related to the use of a privacy budget [10],
with the difference that it measures the budget on the escaping information,
rather than the read information.

2.1 Computing the API imprint

We use three known and widely used open-source fingerprinting libraries
to compute the baseline API imprint: Fingerprint]S [16], Imprint]S [21], and

2 APPROACH 113

Client]S [9]. Of the three Fingerprint]S is the best maintained and to a large
extent the API imprint of Fingerprint]S supersedes the API imprints of the
other two. Common to those three fingerprinting libraries is that they are
extensively configurable w.r.t. what information to use in the fingerprint.
The reason for this configurability is that different fingerprinting uses require
different properties of the fingerprint. For instance, for user identification,
where the fingerprint is used as an identifier, two properties are important
for the fingerprint: 1) uniqueness and 2) time stability [46]. If the produced
fingerprint is not unique any users that share the same fingerprint will be
mistakenly identified, and if the fingerprint is not stable the same user will
appear to be different users. Those two properties are to a certain extent
implementation antagonists; a large API imprint promotes the uniqueness of
the fingerprint while potentially causing the fingerprint to become less stable,
while a smaller API imprint potentially leads to a more stable fingerprint,
while, at the same time, less unique. In addition, a large API imprint is easier
to detect also for the more crude detection mechanisms that are presently
available. Indeed, our empirical study indicates that deployed fingerprinting
carefully select which fingerprinting features to use, likely both to avoid
detection and to promote stability.

To compute the baseline API imprint we combine the API imprints of
Fingerprint]S, Imprint]S, and Client]S running in isolation with all features
turned on. This was done by creating specialized web pages for each library
containing only the fingerprinting code. Each such page was then executed
while labeling the results of all API accesses with their access paths. This
way, the APl imprint of each of the libraries could be read directly from the
label of the resulting fingerprint as a set of access paths. The three resulting
sets were then combined to form the final baseline API imprint.

2.2 Detecting fingerprinting

The baseline API imprint identifies the part of the execution environment
that contains fingerprinting-sensitive information. By labeling all values
originating from this part with the access path, tracking the information flow
dynamically and monitoring the label creation and flow during the execution
we are able to detect fingerprinting in applications. For each page and API
endpoint we accumulate the labels of all values reaching the endpoint. From
this set of endpoints we select the potential network sinks, i.e., endpoints
that can be used to communicate information, such as XMLHttpRequest, or
store information, such as window. localStorage, window. sessionStorage, and
document. cookie. In addition, we gather all labels of all values created by the
application. This allows us to detect if the web page gathers and compiles a
fingerprint internally even if the fingerprint is not communicated over the

114 ESSENTIALFP: EXPOSING THE ESSENCE OF BROWSER FINGERPRINTING

network. Since this collection is relatively resource intensive when done on
actual web pages, we restrict the initial labeling to the API imprint.

The result of the label collection is two maps: one mapping network
sinks to the accumulated label of escaping values, and one mapping all
script origins to the set of created labels. Those two maps allow us to analyze
each webpage for both internal creation of fingerprints and fingerprinting,
i.e., where the collected information leaves the browser via a network sink.
More precisely we can distinguish between the following uses.

* Traditional use: information is gathered, composed and sent (detected
as both internal creation of fingerprints and fingerprinting)

* Piece by piece: information is gathered and sent (detected as finger-
printing without internal creation of fingerprints)

* Local use: information is gathered, composed and used, but not sent
(detected as internal creation of fingerprints without fingerprinting)

* No fingerprinting: no information is composed, used or sent (detected
as neither internal creation of fingerprints or fingerprinting)

To identify the presence of internal creation of fingerprints, we measure
the maximum overlap of the created labels for each script w.r.t. the baseline
API imprint, and, to identify the presence of fingerprinting, we compute
the overlap of each identified network sink and select the largest as the
fingerprinting flow. The reason we do not join the network sinks is that we
cannot be sure that all of them go to the same receiver. By only selecting the
largest sink we don’t overestimate the flow.

In addition to detecting the presence of fingerprinting, it is also interest-
ing to try to identify the kind of fingerprinting that takes place. To this end,
we use the per-flag extracted API imprints of Fingerprint]S. This gives us
the possibility to characterize detected fingerprinting in terms of features
and to identify common patterns using heatmaps.

3 Design and implementation

To perform measurements and detect fingerprinting we have created an
information flow aware browser: EssentialFP. EssentialFP is implemented as
a combination of Chromium [8] and JSFlow [61, 60, 59], a security-enhanced
JavaScript interpreter, allowing fine-grained information flow tracking. At
the core, EssentialFP is a modified version of Chromium that uses JSFlow
instead of V8 to execute JavaScript. JSFlow is deployed as a library [71],
allowing JSFlow to execute all script content of a page. The injection is done

3 DESIGN AND IMPLEMENTATION 115

by trapping all scripts to be executed and wrapping them in a call to the
JSFlow execute function.

3.1 Extending JSFlow

The current release of JSFlow supports ECMA-262 version 5 (ES5) [22] along
with the mandated standard runtime environment. In order to use JSFlow to
run actual web pages, a number of extensions must be made. JSFlow must be
extended to support new features defined in ECMA-262 version 6 [36] and
later standards (ES6+). In addition, JSFlow must also be extended to mediate
between its own execution environment and the execution environment of
the browser, as well as collecting the created and escaping labels seen during
page execution.

Extending JSFlow to ES6+ Initial attempts showed that a large portion of
web pages use ES6+ features and, thus, do not run fully using an interpreter
that only supports ES5. Extending JSFlow with support for ES6+ is a large
undertaking that would require both extending the core engine of JSFlow,
as well as the standard libraries. Such an extension would require that
large portions of JSFlow be rewritten. While preferable, we opted for the
reasonable middle ground of adding support for ES6+ in JSFlow by using a
combination of transpiling and polyfilling.

Before any script is executed, JSFlow transpiles the code from ES6+ to ES5
using Babel [6]. This will produce a new program that should be semantically
equivalent to the original, but only use ES5 features. As an example, assume
the following code which uses the arrow function (=>), introduced in ES6.

[1,2,3].map(x => x + 1)

Since the arrow function does not exist in ES5, Babel transpiles the above
piece of code to the following.
[1,2,3].map(function (x) {

return x + 1;

b

The result contains only ES5 features and can be executed by JSFlow.

In addition to transpiling, we use polyfills to provide the parts of the
ES6 runtime that JSFlow does not implement. Before any code is executed
JSFlow executes a runtime bundle containing all support libraries and poly-
fills needed for proper execution. This runtime bundle extends the JSFlow
runtime environment with polyfills from core-js [11] for the ES6+ standard
runtime, regenerator-runtime [34] which is needed by some of Babel’s trans-
formations, and window-crypto [42] which adds the Window.crypto func-
tionality [43].

116 ESSENTIALFP: EXPOSING THE ESSENCE OF BROWSER FINGERPRINTING

Connecting the execution environments In order to use JSFlow to exe-
cute scripts in a browser environment, it is imperative to connect the JSFlow
execution environment to the browser’s V8 execution environment. This
requires mediation between V8 values and JSFlow values. The mediation
needs to be bidirectional: JSFlow values must be mediated to values V8 can
interpret and V8 values must be mediated to values JSFlow can interpret.
Further, it is crucial that the mediation is connected in the sense that modifi-
cations done in either execution environment are reflected in the other. As
an example, if a script registers an event handler by assigning a function
to a property, the assignment must be pushed from the JSFlow execution
environment to the V8 execution environment. and the JSFlow function must
be mediated. Since JSFlow functions are not V8 functions using a JSFlow
function as a V8 callback would not work and the event handler would not
be called when the event occurs.

To mediate between JSFlow and V8, we scale the mediation technique
presented by Sjosten et al. [82] to full JavaScript in the browser setting.
The mediation differs depending on the type of value and the direction of
mediation.

Masquerading JSFlow values as V8 values Mediating primitive values
is relatively simple since JSFlow primitive values are pairs of V8 values and
security labels. When mediating values from JSFlow to V8, these security
labels must be removed: a process we call unlabeling. After a primitive value
has been unlabeled, it can be directly transferred to V8.

Mediating non-primitive values such as Functions or Objects requires
recursive mediation of their parts. To retain the connection between the
original JSFlow entity and the V8 entity we use Proxies [31]. The proxy
allows a JSFlow object to masquerade as a V8 object and performs recursive
on-the-fly mediation of the JSFlow entity on access.

Masquerading V8 values as JSFlow values Similar to above, primitive
values can be passed from the V8 execution environment to the JSFlow
execution environment as they are, apart from the need to add a security
label: a process called relabeling.

Mediating non-primitive values such as Functions or Objects requires
recursive mediation of their parts. This is done by using wrapper objects.
These wrappers are special versions of the JSFlow internal Ecma objects, that
in addjition to the standard object behavior push mediated values between
the wrapper and its host. The mediation follows a read-once-write-always
semantics. That is, when a property is read, if it is defined on the host object,
it is brought from the V8 execution environment, wrapped and cached as an
ordinary JSFlow property on the wrapper. Subsequent reads interact with

3 DESIGN AND IMPLEMENTATION 117

the wrapper as an ordinary JSFlow object. When a property is written, it is
written both unmediated to the wrapper as well as mediated to the host.

The mediation explained above allows for bringing entities from the V8
runtime into the JSFlow runtime and vice versa, which effectively extends
JSFlow with the APIs provided by the browser. This allows scripts to interact
with the browser as if they are running directly in V8.

Protecting JSFlow Since JSFlow itself runs in the V8 execution environ-
ment it is mediating to and from, there is a need to protect the integrity
of JSFlow. As the mediation allows the scripts to modify the V8 execution
environment, JSFlow must run the scripts defensively, protecting key parts
of the environment from being tampered with. JSFlow itself uses (parts of)
the standard ES6+ execution environment, and protection is provided by
the JSFlow implementation of the ES5 execution environment and the global
object as follows. The standard execution environment of JSFlow does not
perform mediation, which means that scripts are unable to modify those
parts of the V8 execution environment. Parts that are not part of the J[SFlow
execution environment are all mediated via the JSFlow global window object.
This object is a hybrid between a JSFlow global object and a wrapper and
provides protection from tampering by hiding sensitive parts of the execu-
tion environment. The parts of the execution environment defined by JSFlow
via this global object or that is part of the hidden environment will not be
mediated and instead implemented by the polyfills. Other parts follow the
read-once-write-always mediation provided by the J[SFlow wrappers.

Label models The labeling and unlabeling of entities when mediating
between JSFlow and V8 rely on label models which provide an abstract view
of the computation of the mediated V8 values. Providing such a model for
the full execution environment of a browser is not within the scope of this
work, and we refer the reader to [82] for an insight into the complexity of cre-
ating such models. Instead, we use a simpler label model, where parts of the
execution environment can be selected to be labeled with the access path. As
an example, reading the V8 runtime property navigator.userAgent would la-
bel the resulting value with the label <global.navigator.userAgent>, where
global represents the global window object. When computing the baseline
API imprint of the fingerprinting libraries, we use a model that labels every
mediated part of the V8 API. This baseline is then used for a more conserva-
tive model used when crawling pages. This model only labels the parts of
the V8 API that is part of the baseline.

118 ESSENTIALFP: EXPOSING THE ESSENCE OF BROWSER FINGERPRINTING

3.2 Extending Chromium

Modifying and maintaining modifications on a commercial product like
Chromium requires a lot of work. The updates are frequent and the changes
are often major, potentially requiring a lot of effort to cope with if the modi-
fication is substantial. For this reason, we try to keep the Chromium modifi-
cations to a minimum.

To be able to inject J[SFlow we focus the modifications to the point in
Chromium where the script source code is transferred from the rendering
engine Blink to V8 as a string for execution. There, the following functionality
was inserted.

e If the intercepted script is the first script to execute in the context
JSFlow is first injected, followed by the injection of the JSFlow runtime
containing polyfills and other supporting libraries.

* When JSFlow has been injected the script is rewritten to contain a call
to the main execution method of JSFlow passing the original source
code as an argument.

To exemplify the rewriting consider a page containing the following script:

<script>
console.log("Hello World!");
</script>

As described above, the injection will wrap the entire script in a call to
JSFlow. In this particular case, the result would become
<script>
jsflow.executeAndUnlabelResult (
"console.log(\"Hello World\");"
)i
</script>
The injection works in the same way for inline scrips, scrips fetched via a
URL, or retrieved by other means. At the point of injection Chromium has
already extracted the script source into a string. This way, all scripts on a
page are executed via JSFlow regardless of if they originate from a inline
script tag, a script tag using a URL, or an event handler.

3.3 Collecting labels

Every value that is going through JSFlow will be given a label by the label
model, and when two values are combined, the corresponding label will be
the least upper bound of the labels. In our setting, since labels are the access
paths of the information used to create the values, the least upper bound

4 EMPIRICAL STUDY 119

corresponds to the union of the paths. Take, for example, the following code
snippet.

let a = navigator.userAgent;
let b = navigator.language;
letc=a+ "' ' +b;

The value a will be labeled <navigator.userAgent> and the value b will be
labeled <navigator.language>. Since the value c is the aggregation of values
a and b it will, therefore, be labeled with both sources forming the label
<navigator.userAgent, navigator.language>.

In order to analyze the aggregated labels, JSFlow was extended with the
ability to store the labels seen during execution on a script basis. In practice
this is done on label creation; whenever the least upper bound is computed
in JSFlow, the computed label will be stored internally in a map that maps
script origins to label sets. This allows us to detect whether any values that
may correspond to a fingerprint were created by the script.

In addition, in order to be able to detect fingerprinting, we are interested
in the flow from the API imprint to the network sinks. To be able to track this
we also store an accumulated label per API endpoint. Every time a JSFlow
value is unlabeled to be passed into the V8 runtime (by an assignment or
function call), we add the removed label to a map that maps API endpoints
to labels.

During the execution of a page, JSFlow regularly writes the accumulated
labels via a function on the global object if such a function exists. This way
automated tools, like crawlers, are able to collect labels from JSFlow by
providing the extraction function. In our case, we use a Puppeteer-based [32]
crawler that stores the collected labels to disk for later analysis.

4 Empirical study

In order to validate our approach, we have conducted an empirical study by
crawling web pages belonging to one of four different categories:

* (analytics) web pages that use analytics but not fingerprinting,

(bot detection) web pages that perform bot detection,

(authentication) web pages that use some form of fingerprinting as
part of their authentication process, and

(fingerprinting) web pages in Alexa top 100,000 that perform finger-
printing that is not part of bot detection or authentication.

120 ESSENTIALFP: EXPOSING THE ESSENCE OF BROWSER FINGERPRINTING

A total of 25 web pages were selected: 5 in each of the categories analytics,
bot detection, and authentication, and 10 in the fingerprinting category.
Depending on the category different rationals were used in the selection.

Analytics For the analytics category we wanted to find pages that make use
of analytics but are free from fingerprinting code. Analytics is widely used
and we made the assumption that popular pages would include analytics
to analyze the popularity of various parts. Using this as a starting point we
selected a few candidates and visited them with the Brave browser [7]. Brave
clearly indicates when tracking and analytics scripts have been blocked
which allows us to easily identify their presence. To verify that the scrips
were used (and not only present) by the pages the blocking was disabled
and the pages were revisited to verify that the scripts were executed. To
ensure that the analytics pages were free from fingerprinting the method
to find fingerprinting pages described below was used in addition to the
information given by Brave. A total of five pages containing analytics were
selected.

Authentication Since fingerprinting can be used to identify and track
users it can also be used at authentication points to protect against, e.g.,
account hijacking. To find pages that incorporate fingerprinting in their
authentication process we selected the pages of a few banks under the as-
sumption that banks both include authentication and have a vested interest
in protecting their users. To detect the candidates that may contain finger-
printing we searched for the presence of known fingerprinting libraries by
using the following simple syntactic heuristics where we looked for one of
the following three features:

1. calls to toDataURL, which can be used for canvas fingerprinting,

2. the known pangrams that are part of widely used fingerprinting li-
braries “How quickly daft jumping zebras vex.”, “Cwm fjordbank
glyphs vext quiz”, and “abcdefghijklmnopgrstuvwxyz”, and

3. calls to navigator.plugins.

If any of these features were found, we manually analyzed the scripts of
the page to determine if the page contained fingerprinting or not. Note
that this heuristics does not necessarily skew the selection to pages that
contain canvas or plugin fingerprinting. In our experience, pages that per-
form fingerprinting using one of the major fingerprinting libraries do so
by configuring the library without modifying it, i.e., all parts of the library
remain intact on the page, potentially without ever being used. A total of
five pages containing authentication were selected.

4 EMPIRICAL STUDY 121

Bot detection The use of bots for, e.g., scraping prices from online stores
and ticket shops is common, which has prompted web pages to try and
detect these bots. There are several companies which offer protection against
bots, such as DataDome [12], PerimeterX [28], and Imperva (previously Distil
Networks) [20]. In order to find pages that do bot detection, we created a
specialized crawler that visits web pages, waits for 30 seconds, and then
takes a screenshot. The candidate pages to be visited were collected in three
ways. First, companies that offer bot detection often also mention some
pages that use their services. We included a selection of promoted pages
as candidates. Second, bot detection is often used on booking pages. For
this reason, we collected a list of large airline companies and included them
as candidates. Third, we included the web pages mentioned by Jonker et
al. in their paper on the detection of bot detection [64] as candidates. Each
of these pages was visited by the screenshot crawler, and the screenshots
were collected and analyzed for bot detection. From the pages where the
screenshot indicated potential bot detection five pages using different bot
detection mechanisms were manually selected.

Fingerprinting To find web pages that perform fingerprinting which does
not match any of the previous categories, we used two different approaches.
First, we used information from a crawl of Alexa top 100,000 performed
with OpenWPM [1], which recorded blocked fingerprinting resources based
on the Disconnect list [13]. We also visited pages in the Alexa top 1,000 and
did the same analysis as for authentication pages. Based on these results, we
visited a random set of web pages which had fingerprinting resources and
ensured these resources were executed. From this set, we picked a total of
ten pages.

4.1 Experiment setup

To visit the different web pages, we used a crawler implemented with Pup-
peteer [32] to control EssentialFP. In order to decrease the overhead of col-
lecting the labels, we used the baseline API imprint created by running
three open-source fingerprinting libraries: Fingerprint]S [16], Imprint]S [21],
and Client]S [9]. Both Fingerprint]S and Imprint]S are easily customizable
allowing the user of the libraries to select what features should be used
for the fingerprinting. For the full baseline API imprint, we used all avail-
able features of Fingerprint]S and Imprint]S, while for Client]S we used the
getFingerprint function. To do this, we created three different web pages
that we visited using the crawler to collect the API imprint of each library.
Those API imprints were then combined to form the baseline API imprint.
In addition to creating the baseline, we also created API imprints for each

122

ESSENTIALFP: EXPOSING THE ESSENCE OF BROWSER FINGERPRINTING

Table 3.1: Table showing the sinks used by web pages to exfiltrate the (po-
tential) fingerprint value. Only sinks that can be used to send data (e.g.
document. cookie, network requests etc.) is shown. The entries are sorted by
category (analytics, authentication, bot detection, and fingerprinting).

Domain | Sinks
microsoft.com | navigator.sendBeacon
alexa.com | Image.src
stackoverflow.com | navigator.sendBeacon
Washingtonpost.com navigator.sendBeacon
zoom.us | HTMLFormElement.setAttribute

zionsbank.com
pnc.com

citibank.com

XMLHttpRequest.open

global.HTMLFormElement.className,

document.createElement.src
XMLHttpRequest.send

cit.com | HTMLFormElement.setAttribute
credit-suisse.com | HTMLFormElement.appendChild
brainly.com | document.createElement.src
skyscanner.com | Blob
streeteasy.com | XMLHttpRequest.send

frankmotorsinc.com
lufthansa.com

XMLHttpRequest.send
XMLHttpRequest.send

ultimate-guitar.com

document.createElement.src,
navigator.sendBeacon
document.createElement.src,

aktuality.sk XMLHttpRequest.open
lg.com | HTMLFormElement.setAttribute
olx.ua | document.cookie
scribd.com | document.createElement.src
rezka.ag | HTMLFormElement.setAttribute
kinoprofi.vip | HTMLFormElement.setAttribute
jd.com | XMLHttpRequest.send
sciencedirect.com | document.cookie
rei.com | document.cookie

individual feature of Fingerprint]S and Imprint]S. Those API imprints were
used when analyzing the kind of fingerprinting detected.

Using the baseline, each of the selected pages was visited by the crawler
for up to 12 hours to ensure that the fingerprinting script was not prevented
from running due to performance issues.

4 EMPIRICAL STUDY 123

4.2 API endpoints

Each of the selected web pages was visited while recording created and
escaping labels from the baseline API imprint. For each page and each API
endpoint, every label reaching the endpoint was collected in addition to
collecting all created labels for each page and script. This allows us to infer
what parts of the API imprint did flow to network sinks as well as if the
application accumulated fingerprinting information internally.

To define potential network sinks we analyzed the used API endpoints
to identify uses that could instigate a network or storage request (which
would or could be used to send the information later). For this experiment,
the identified network sinks were:

® navigator.sendBeacon

® XMLHttpRequest

e fetch

® window.postMessage

* setting src attributes of HTML elements such as images and scripts
* setting attributes on HTMLFormElement

® document.cookie

® window.localStorage and window.sessionStorage

In addition to this, we also treat the Blob class as a network sink, since on
one page the data was transmitted using a Blob object, a flow that would
otherwise have been missed by the current label model of Essential FP. This
is not a limitation of the approach, but rather only the current label model,
which does not fully track flows via mediated parts of the APIL. As expected,
the number of flows via the mediated API is small (this was the only oc-
currence) and developing a full flow model for the Chromium execution
environment is too large an undertaking to be presently justifiable.

4.3 Analysis

The complete overlap for the sinks against the combined fingerprinting
baseline from Fingerprint]S, Imprint]S, and Client]S for each web page can
be found in Figure 3.1 and the exfiltration method for each web page can be
seen in Table 3.1.

A key takeaway is that our results confirm our intuition: pages that access
a wide surface of sensitive APIs and send consolidated information to the

124 ESSENTIALFP: EXPOSING THE ESSENCE OF BROWSER FINGERPRINTING

Analytics Authentication Bot Detection Fingerprinting
I Y Y Y N N Y B O B

Internal

I [] Esacping

60% B = B

40% - -+ H

20%

CCOC [GAN 9900049 QO.C\'OO-\—'Q’Z*"-QQ.Q
gy é'%*oo& YT & SESEE TP S, YR
FEFLT O N FSLES g FE K
& LS FT F TELELE g0 T E ¢
F & F7 F ST §
g)@,ﬁ & 'b& X S
< & N

Figure 3.1: Breakdown of the maximum overlap for each web page against
the baseline API imprint consisting of the libraries Fingerprint]S, ImprintJS,
and Client]S. The web pages are sorted by category, as well as within each
category based on the escaping label. The y-axis is the percentage overlap
for a web page with the baseline API imprint.

network represent the essence of fingerprinting and are clearly marked as
such by their high overlaps with the baseline.

Further, the majority of the visited web pages send sensitive information
via network sink, as can be seen in Table 3.1. This is an indication that
(partial) compounded data is being sent to an external server. As expected,
this occurs on pages belonging to all categories. The difference is the amount
of sensitive information being transmitted. This is a strong indicator that it
does not suffice to look at the API imprint of the application and whether
the application uses the network or not. To detect fingerprinting we must
track what information reaches the network sink.

We can also see that the majority of the web pages have close to equiv-
alent internal fingerprints and labels that reach the network sink, which
indicates that current fingerprinting scrips accumulate and compute a finger-
print before transmitting it and that piece-by-piece fingerprinting, where the
fingerprint is being sent gradually to an external server, is not as common.

When looking at the different categories, an interesting picture emerges.

4 EMPIRICAL STUDY 125

First, we can see there is a potential cut-off that allows us to distinguish
between the analytics category and more intrusive fingerprinting in the
fingerprinting category. A larger than 20% overlap with the full baseline
indicates the presence of fingerprinting. Indeed, the maximum matching
overlap for the analytics category came from zoom.us, with an overlap of
15.5%. This can be compared with the minimum matching overlap for the
fingerprinting category, which was from ultimate-guitar.com with 20.2%.

For the other categories, the situation is more subtle because the extent of
fingerprinting is different in authentication and bot detection web sites. This
is not surprising since authentication and bot detection have different goals
compared to analytics and actual fingerprinting. Another interesting result
is the result for brainly.com, which uses DataDome for bot detection. From
the small API imprint, it is clear that DataDome did not have to perform any
massive fingerprinting in order to distinguish our crawler from a human
user. The reason for this is likely the fact that we do not attempt to hide that
we are a crawler, as using stealth libraries for Puppeteer (e.g. puppeteer-
extra-plugin-stealth [33]) can make properties used for fingerprinting non-
accessible, making the amount of fingerprinting information less.

Aside from the pages in the fingerprinting category using cookies as
the exfiltration method, there is no real distinction between the exfiltration
methods used in the different categories. However, when looking at credit-
suisse.com, we can see a large drop between the overlap of the largest
internally created label and the exfiltrated label. After analyzing the source
code of the web page it is clear that the largest internal label comes from
performing fingerprinting, which writes the result to a global variable called
fp2murmur. This global variable is then never used, which may indicate
the result from that specific fingerprinting method is not used. However,
we could also see that several fingerprinting attributes are being written
gradually to a form element, which is the 29.8% overlap which can be seen
in Figure 3.1.

To further analyze the four categories, we have created heatmaps for the
different features of Fingerprint]S. The heatmaps are found in Figure 3.2,
where each row shows the conditional probabilities of the features of each
column given the feature of the row interpreted as a gradient between yellow
(0% probability) and red (100% probability). Thus, the diagonal shows which
features were used by the pages in the category. Four distinct patterns for
the different categories emerge. Looking at the heatmaps we see that pages
from the analytics category (Figure 3.2a), are not that intrusive when it
comes to data collection, while the pages from the authentication category
(Figure 3.2b) and the bot detection category (Figure 3.2c) show an increased
intensity in the use of fingerprinting features. Finally, Figure 3.2d clearly

126 ESSENTIALFP: EXPOSING THE ESSENCE OF BROWSER FINGERPRINTING

shows that the more general, traditional fingerprinting is the most intrusive.
Relatively many features are used, which supports the success in detecting
fingerprinting by looking at the overlap between the baseline API imprint
and the escaped information.

Interestingly enough, pages in the bot detection category use
enumerateDevices, which probes the list of all available media input and
output devices. It is worth to point out that enumerateDevices is disabled
by default in Fingerprint]S, which may explain why it is not used in the
traditional fingerprinting category. Similarly, both the authentication and
the bot detection categories use the webdriver feature, which checks for
navigator.webdriver. This property indicates if the user agent is controlled
by an automatic tool, such as Puppeteer and Selenium, which is logical to
check for by these pages.

44 Remarks on performance

JSFlow is an information flow aware JavaScript interpreter written in JavaScript.
The main goal of JSFlow is to provide a platform for experimentation with
various forms of dynamic IFC in a JavaScript setting and as such is not
written with performance in mind. On the contrary, in order to ensure cor-
rect behavior JSFlow follows the ECMA-262 version 5 standard very closely.
Naturally, if one compares JSFlow executing a script on top of V8 to the
script running natively in V8 the performance difference is significant.

A more interesting question is how large portion of the execution time is
due to information flow tracking. While this is not entirely easy to measure,
since there is no way to turn off information flow tracking in JSFlow, most of
the tracking passes through a limited number of functions (e.g., for joining
and comparing labels). Profiling those functions indicates that the labeling
incurs a runtime cost of around 5% on the Fingerprint]S page used to create
the baseline API imprint.

While the 5% overhead might be a reasonable starting point for optimiz-
ing a V8-based implementation, this direction is outside the scope of our
work. Instead, we have focused on a proof of concept that demonstrates
that observable tracking can be leveraged to effectively track fingerprinting
patterns. As such, EssentialFP provides a rich platform for experiments and
security testing of real-world web pages with dynamic IFC.

5 Discussion

While our initial experiments show that it is possible to detect fingerprinting
by tracking how information flows from a baseline API imprint to network
sinks, our work opens up a few interesting avenues of future work.

5 DISCUSSION

(a) Analytics

enumerateDevices
audio
fontsFlash
fonts [l | |
touchSupport
hasLiedOs
hasLiedResolution
adBlock
webglVendorAndRenderer
webgl
canvas
lugins
doNotTrack
platform [l |]
cpuClass
openDatabase
addBehavior
1ir\dlesxedDb -
ocalStorage
sessionStorage . -
timezone
availableScreenResolution
screenResolution [l W |]
hardwareConcurrency
. pixelRatio
devmelM%morK
colorDept
lan; ugge . - .
webdriver
userAgent [l | |

(b) Authentication

enumerateDevices
audio

fontsFlash

fonts
touchSupport

hasLiedOs

hasLiedResolution
adBlock |]
webglVendorAndRendetl;eﬁ

webg]
canvas H []
lugins
doNotTrack
platform [l] [|
cpuClass

|
openDatabase [l H H . I N
| |

addBehavior

indexedDb

localStorage

sessionStorage

timezone

availableScreenResolution

screenResolution

hardwareConcurrency

. pixelRatio
deviceMemo
colorDept]

language

webdriver

userAgent

127

100

80

100

80

-60

128 ESSENTIALFP: EXPOSING THE ESSENCE OF BROWSER FINGERPRINTING

(c) Bot detection

enumerateDevices 100

audio
fontsFlash

fonts
touchSupport [INEEEG_—

hasLiedOs
hasLiedResolution [IEEG_
adBlock
webglVendorAndRenderer
webgl

80

clanyas
ugins
doNgt rack
platform
cpuClass
openDatabase
addBehavior
indexedDb
localStorage
sessionStorage
timezone
availableScreenResolution
screenResolution
hardwareConcurrency
_ pixelRatio
dev1ceMem0{K

colorDep
language
webdriver
userAgent

£ 160

40

- 120

(d) Fingerprinting

enumerateDevices

audio

fontsFlash

fonts

touchSupport

hasLiedOs

hasLiedResolution

adBlock

webglVendorAndRenderer

webgl

canvas

lugins

doNotTrack

platform

cpuClass

openDatabase

addBehavior

indexedDb

localStorage

sessionStorage

timezone

availableScreenResolution

screenResolution

hardwareConcurrency

_ pixelRatio

dev1ceMem0{K
colorDep

language

webdriver

userAgent

Figure 3.2: Heatmaps for the different categories. For each row the column
identifies the conditional probability of the feature of the column given the
feature of the row. The probability is interpreted as a gradient between
yellow (0% probability) and red (100% probability).

6 RELATED WORK 129

5.1 Label models

Two of the crawled pages used mediated versions of btoa to base-64 encode
the gathered information. This caused the labels to be lost before reaching
the network sink. In this case the remedy was simple. By implementing btoa
the flows were restored, but this points to the issue of losing labels when
using functions that were automatically mediated from the V8 execution
environment. An attractive goal for future explorations is to find better-
suited label models for standard API interaction that more precisely track
flows of information via the mediated API functionality.

5.2 Fingerprinting metrics

Our current solution compares the overlap between the baseline API imprint
and the script API access pattern to detect fingerprinting. The results show
that this approach is already effective. However, it would be interesting to
explore if the choice of metrics can be further improved.

Weighted overlap The unweighted overlap used in this paper does not
distinguish between common and uncommon features. For example, the API
pattern of canvas fingerprinting is implicitly assigned the same importance
as the API pattern of querying the user agent or the screen width of the
browser, while the canvas fingerprinting is arguably more indicative of
fingerprinting than probing the user agent or screen width. This can be
remedied by assigning weights to each source and compare the weighted
sum. One interesting starting point to the challenge of deciding on the
relative weights could be to use the entropy reported by Panopticlick [27] to
generate the weights for each API pattern in the fingerprinting library.

Conditional overlap The weighted overlap assigns more importance
to features that are more indicative of fingerprinting, but does not take
that combinations of features may be rarer than others, as indicated by
our heatmaps, into account. Thus, such combinations should probably be
given more weight than the sum of their parts. The conditional probability
computed to generate the heatmaps could be a good starting point to finding
clusters that identify the various categories.

6 Related work

Much work has been done, regarding both conducting and combating device
fingerprinting. This section aims to provide an overview of both categories.
For a full description, we refer the reader to a timely survey by Laperdrix et
al. [69].

130 ESSENTIALFP: EXPOSING THE ESSENCE OF BROWSER FINGERPRINTING

Browser fingerprinting While device fingerprinting has been a known
problem for a long time, Mayer noticed a browser could present “quirki-
ness” which originated from the operating system, the hardware, and the
browser configuration [72]. He showed that 96.23% of 1,328 users could be
uniquely identified just by looking at navigator, screen, navigator.plugins,
and navigator.mimeTypes. Eckersley was the first to present how browser
fingerprinting could be effective by querying for standard browser features
in a large-scale study [53], showing 83.6% of the 470,161 fingerprints were
unique. This number rose to 94.2% if Flash or Java were enabled. However, a
more recent study by Gémez-Boix et al. [57] showed the amount of uniquely
identifiable users have gone down, but that a non-unique fingerprint is prob-
able to become unique if some features change. Since the study of Eckersley,
new technology has been added to the browser, and with that new ways of
fingerprinting browsers have emerged. Mowery and Shacham showed how
the HTMLS5 canvas feature and the WebGL graphics API could be used to
generate stable fingerprints [73]. Cao et al. designed a fingerprinting tech-
nique that relied on WebGL, uniquely identifying 99.24% of the 1,903 tested
devices [50]. Mulazanni et al. showed how differences in the JavaScript
execution engine could be used to fingerprint users based on a test suite
on the EcmaScript standard [74], and Nikiforakis et al. [76] showed differ-
ences in the navigator and screen objects can distinguish between different
browser families, as well as major and minor versions within the same family.
Sanchez-Rola et al. exploited API functions in the HTML Cryptography API
in Chromium which, when called, will invoke native functions, allowing
to time the internal clock signals of the CPU [79]. Although fingerprint-
ing is privacy-intrusive, research has been made on how it can strengthen
security. Alaca and van Oorschot [46] explored device fingerprinting for
augmenting authentication, and Laperdrix et al. proposed the use of canvas
fingerprinting to strengthen web authentication via a challenge-response
mechanism [67]. On a similar vein, Jonker et al. showed that, by using the
characterization of the fingerprint surface of 14 web bots, a vast majority
of them can be uniquely identifiable through well-known fingerprinting
techniques [64]. Amin Azad et al. showed that relying on fingerprinting
could be enough to defend web pages against basic bots, but currently fail
for less popular browsers in term for automation [47].

Acar et al. conducted a large scale study over browser fingerprinting,
showing that 5.5% of the crawled Alexa top 100,000 web pages conducted
canvas fingerprinting [44]. Repeating a similar experiment in 2016, Engle-
hardt and Narayanan [54] conducted a large-scale analysis on fingerprinting
on Alexa top 1 Million web pages to see the long tail of online tracking.
They found that 1.6% of the crawled web pages used canvas fingerprinting,

6 RELATED WORK 131

but they also discovered three techniques not measured before: AudioCon-
text fingerprinting, Canvas-Font fingerprinting, and WebRTC fingerprinting.
Lastly, Vastel et al. [89] analyzed the evolution of fingerprints to link finger-
prints belonging to the same device over time, showing they could track a
user on average 51.8 days, and 26% of devices over 100 days.

Browser extensions There have also been experiments of how browser ex-
tensions can be used to enhance fingerprinting. Several studies have shown
different methods of discovering browser extensions, ranging from search-
ing for resources in the extension accessible by the web page [81], how
they can be used to track users [80], and how one can time the accessing
to detect every installed browser extension [78]. Starov and Nikiforakis
created XHOUND, showing browser extensions could be uniquely iden-
tifiable based on Document Object Model (DOM) modifications [85]. They
found that 9.2% of the top 10,000 extensions (and 13.2% of the top 1000
extensions) can be uniquely identifiable on any domain based on the DOM
modifications alone. These numbers went up to 16.6% for the top 10,000
extensions and 23% for the top 1000 extensions when a domain from the
Alexa top 50 was visited. Looking at how browser extensions made page
modifications deemed unnecessary for the extension’s functionality, Starov
et al. [84] showed that 5.7% out of 58,304 extensions were identifiable due to
this unnecessary bloat. Gulyés et al. combined browser fingerprinting with
additional data of installed extensions and web logins [58]. They conclude
54.86% of users with at least one detectable extension is unique, 19.53% of
users with at least one detectable login is unique, and 89.23% of users are
unique if they have at least one detectable extension and one detectable
login.

Combating fingerprinting In order to prevent browser fingerprinting,
several different approaches have been proposed. Browser extensions can be
used to randomize, e.g., the user agent, but as Nikiforakis et al. showed [76],
this can create inconsistencies between the user agent and other publicly
available API (e.g. navigator.platform). Similarly, Vastel et al. developed
FP-SCANNER [88], a test-suite that explores browser fingerprint incon-
sistencies to detect potential alterations done by fingerprinting counter-
measures tools. They demonstrated FP-SCANNER could not only find
these inconsistencies but could also reveal the original values, which in turn
could be exploited by fingerprinters to more accurately target browsers with
fingerprinting countermeasures.

Instead, as one key aim when conducting device fingerprinting is to
link the newly generated fingerprint to an old one, work has been focused
on breaking the linkability between different sessions. Both Laperdrix et
al. [70] and Gémez-Boix et al. [56] proposed virtualization and modular

132 ESSENTIALFP: EXPOSING THE ESSENCE OF BROWSER FINGERPRINTING

architectures to randomly assemble a coherent set of components whenever
a user wanted to browse the web. This would break the linkability while not
having any inconsistencies between attributes, but the user comfort may go
down.

Besson et al. [49] formalized a privacy enforcement based on a randomiza-
tion defense using quantitative information-flow showing how to synthesize
a randomization mechanism that defines the configurations for each user.
They found that more efficient privacy enforcement often lead to lower us-
ability, i.e., users have to switch to other configurations often. Ferreira Torres
et al. [86] proposed generating unique fingerprints to be used on each visited
web page, making it more difficult for third parties to track the same user
over multiple web pages. FaizKhademi et al. [55] proposed the detection
of fingerprinting by monitoring and recording the activities by a web page
from the time it started loading. Based on the recording, they were able to
extract metrics related to fingerprinting methods to build a signature of the
web page to distinguish normal web pages from fingerprinting web pages.
If the web page is deemed to be fingerprinting, the access to the browser is
limited e.g. by limiting the number of fonts allowed to be enumerated, by
adding randomness to attribute values of the navigator and screen objects,
and noise to canvas images that are generated.

Nikiforakis et al. [75] proposed using randomization policies, which
are protection strategies that can be activated when certain criteria are met.
In particular, they added randomization to offset measurements of HTML
elements (which is used when doing e.g. font enumeration) and plugin
enumeration. Similarly, Laperdrix et al. [68] proposed adding randomness
to some more complex parts of the DOM API: canvas, web audio API,
and the order of JavaScript object properties. Randomization has also been
used to combat fingerprinting via browser extensions by Trickel et al. [87]
that proposed randomizing paths to web-accessible resources to prevent
probing attacks, changing ID and class names which are injected to change
the behavioral fingerprint.

Adding randomness to mitigate canvas, WebGL, and AudioContext fin-
gerprinting has now been implemented by the Brave browser [41], adding
to their already implemented fingerprinting protections [15]. Other browser
vendors are also implementing anti-fingerprinting measures. Firefox intro-
duced Enhanced Tracking Protection [23], which would allow third-party
cookies to be blocked. This has later been expanded to also block all third-
party requests to companies that are known to participate in fingerprint-
ing [17]; a feature that is also found in Microsoft Edge [24]. Safari applies
similar restrictions on cookies as Firefox, and also presents a simplified
version of the system configuration to trackers, making more devices look

7 CONCLUSION 133

identical [35]. The Tor browser aims to make all users look identical to resist
fingerprinting [38]. Unfortunately, this means that as soon as a user maxi-
mizes the browser window or installs a plugin, their fingerprint will divert
from the unified Tor browser fingerprint [66]. Similarly, as all Tor browsers
aim to look identical, Khattak et al. showed they can be a target for blocking,
showing 3.67% of the Alexa top 1,000 pages blocked access to Tor users [65].
Lastly, of the well-known browser vendors, Chrome has announced “The
Privacy Sandbox” [37], where they are planing on combat fingerprinting by
implementing a privacy budget [29].

7 Conclusion

We have presented EssentialFP, a principled approach to detecting finger-
printing on the web. Coming back to RQ1 on the essence of fingerprinting:
EssentialFP identifies the essence of browser fingerprinting by the following
pattern: (i) gathering information from a wide browser API surface (mul-
tiple browser-specific sources) and (ii) communicating the information to
the network (network sink) captures the essence of fingerprinting. This pat-
tern enables us to clearly distinguish fingerprinting from similar types of
scripts like analytics and polyfills. Coming back to RQ2 on exposing fin-
gerprinting: EssentialFP exposes the above pattern by monitoring based on
observable information flow tracking. To implement EssentialFP we have
leveraged, extended, and deployed in a browser JSFlow, a state-of-the-art
information flow tracker for JavaScript. We have demonstrated EssentialFP’s
effectiveness to spot fingerprinting on the web by evaluating it on sev-
eral categories of web pages: analytics, authentication, bot detection, and
fingerprinting-enhanced web pages from the Alexa list. Our results reveal
different extent of fingerprinting in these categories: from no evidence of
fingerprinting in the analytics pages to evidence of fingerprinting in some
of the authentication and bot detection pages and to full-blown evidence in
fingerprinting-enhanced pages from the Alexa list.

8 Bibliography
[1] OpenWPM. https://github.com/mozilla/OpenWPM, accessed: Jan 2020.

[2] https://github.com/disconnectme/disconnect-tracking-protection/
issues, accessed: May 2020.

[3] https://forums.lanik.us/viewforum.php?f=64&sid=
3d7d9fed66ba36b96c4b1873142d0e43, accessed: May 2020.

[4] nhttps://github.com/easylist/easylist/issues, accessed: May 2020.

https://github.com/mozilla/OpenWPM
https://github.com/disconnectme/disconnect-tracking-protection/issues
https://github.com/disconnectme/disconnect-tracking-protection/issues
https://forums.lanik.us/viewforum.php?f=64&sid=3d7d9fed66ba36b96c4b18f3142d0e43
https://forums.lanik.us/viewforum.php?f=64&sid=3d7d9fed66ba36b96c4b18f3142d0e43
https://github.com/easylist/easylist/issues

134 ESSENTIALFP: EXPOSING THE ESSENCE OF BROWSER FINGERPRINTING

[5] https://github.com/brave/brave-browser/issues/10000, accessed:
May 2020.

[6] Babel. https://babeljs.io/, accessed: May-2020.

[7] Brave Browser. https://brave.com/, accessed: May-2020.

[8] Chromium. https://www.chromium.org/Home, accessed: May 2020.
[9] Client]S. https://clientjs.org/, accessed: May 2020.

[10] Combating Fingerprinting with a Privacy Budget. https://github.com/
bslassey/privacy-budget, accessed: May-2020.

[11] core-js. https://www.npmjs.com/package/core- js, accessed: May-2020.
[12] Datadome. https://datadome.co/, accessed: May 2020.

[13] Disconnect. https://github.com/disconnectme/disconnect-tracking-
protection, accessed: May-2020.

[14] EssentialFP code and benchmarks. https://drive.google.com/drive/
folders/1Y2YhZAEUMbtAUXMx - c1Y9lwtcK9BZFNU?usp=sharing, accessed:
May-2020.

[15] Fingerprinting Protections. https://github.com/brave/brave-browser/
wiki/Fingerprinting-Protections, accessed: May 2020.

[16] Fingerprint]S. https://fingerprintjs.com/, accessed: May 2020.

[17] Firefox 72 blocks third-party fingerprinting resources. https://
blog.mozilla.org/security/2020/01/07/firefox-72-fingerprinting/,
accessed: May-2020.

[18] General Data Protection Regulation GDPR. https://gdpr-info.eu/,
accessed: May 2020.

[19] Ghostery. https://www.ghostery.com/, accessed: May 2020.
[20] Imperva. https://www.imperva.com/, accessed: May 2020.

[21] Imprint]S. https://github.com/mattbrailsford/imprintjs, accessed:
May 2020.

[22] Jsflow. http://www.jsflow.net/, accessed: May-2020.

[23] Latest Firefox Rolls Out Enhanced Tracking Protection.
https://blog.mozilla.org/blog/2018/10/23/1latest-firefox-rolls-
out-enhanced- tracking-protection/, accessed: May 2020.

https://github.com/brave/brave-browser/issues/10000
https://babeljs.io/
https://brave.com/
https://www.chromium.org/Home
https://clientjs.org/
https://github.com/bslassey/privacy-budget
https://github.com/bslassey/privacy-budget
https://www.npmjs.com/package/core-js
https://datadome.co/
https://github.com/disconnectme/disconnect-tracking-protection
https://github.com/disconnectme/disconnect-tracking-protection
https://drive.google.com/drive/folders/1Y2YhZAEUMbtAUXMx-c1Y9lwtcK9BZFNU?usp=sharing
https://drive.google.com/drive/folders/1Y2YhZAEUMbtAUXMx-c1Y9lwtcK9BZFNU?usp=sharing
https://github.com/brave/brave-browser/wiki/Fingerprinting-Protections
https://github.com/brave/brave-browser/wiki/Fingerprinting-Protections
https://fingerprintjs.com/
https://blog.mozilla.org/security/2020/01/07/firefox-72-fingerprinting/
https://blog.mozilla.org/security/2020/01/07/firefox-72-fingerprinting/
https://gdpr-info.eu/
https://www.ghostery.com/
https://www.imperva.com/
https://github.com/mattbrailsford/imprintjs
http://www.jsflow.net/
https://blog.mozilla.org/blog/2018/10/23/latest-firefox-rolls-out-enhanced-tracking-protection/
https://blog.mozilla.org/blog/2018/10/23/latest-firefox-rolls-out-enhanced-tracking-protection/

8 BIBLIOGRAPHY 135

[24] Learn about tracking prevention in Microsoft Edge. https:
//support.microsoft.com/en-us/help/4533959/microsoft-edge-learn-
about-tracking-prevention, accessed: May-2020.

[25] Mitigating Browser Fingerprinting in Web Specifications. https://
w3c.github.io/fingerprinting-guidance/, accessed: May 2020.

[26] Modernizr. https://modernizr.com/, accessed: May 2020.
[27] Panopticlick. https://panopticlick.eff.org, accessed: May 2020.
[28] PerimeterX. https://www.perimeterx.com, accessed: May 2020.

[29] Potential uses for the Privacy Sandbox. https://blog.chromium.org/
2019/08/potential-uses-for-privacy-sandbox.html, accessed: May—
2020.

[30] Privacy Badger. https://privacybadger.org/, accessed: May 2020.

[31] Proxy. https://developer.mozilla.org/en-US/docs/Web/JavaScript/
Reference/Global_Objects/Proxy, accessed: May 2020.

[32] Puppeteer. https://pptr.dev/, accessed: May 2020.

[33] puppeteer-extra-plugin-stealth. https://github.com/berstend/
puppeteer-extra/tree/master/packages/puppeteer-extra-plugin-
stealth, accessed: May 2020.

[34] regenerator-runtime. https://www.npmjs.com/package/regenerator-
runtime, accessed: May-2020.

[35] Safari Privacy Overview. https://www.apple.com/safari/docs/
Safari_White_Paper_Nov_2019.pdf, accessed: May-2020.

[36] Standard ECMA-262 6th Edition / June 2015. https://www.ecma-
international.org/ecma-262/6.0/, accessed: May 2020.

[37] The Privacy Sandbox. https://www.chromium.org/Home/chromium-
privacy/privacy-sandbox, accessed: May 2020.

[38] Tor. https://www.torproject.org/, accessed: May 2020.

[39] Tracking Preference Expression (DNT). https://www.w3.0rg/TR/
tracking-dnt/, accessed: May 2020.

[40] Unsanctioned Web Tracking. https://w3ctag.github.io/unsanctioned-
tracking/, accessed: May 2020.

https://support.microsoft.com/en-us/help/4533959/microsoft-edge-learn-about-tracking-prevention
https://support.microsoft.com/en-us/help/4533959/microsoft-edge-learn-about-tracking-prevention
https://support.microsoft.com/en-us/help/4533959/microsoft-edge-learn-about-tracking-prevention
https://w3c.github.io/fingerprinting-guidance/
https://w3c.github.io/fingerprinting-guidance/
https://modernizr.com/
https://panopticlick.eff.org
https://www.perimeterx.com
https://blog.chromium.org/2019/08/potential-uses-for-privacy-sandbox.html
https://blog.chromium.org/2019/08/potential-uses-for-privacy-sandbox.html
https://privacybadger.org/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://pptr.dev/
https://github.com/berstend/puppeteer-extra/tree/master/packages/puppeteer-extra-plugin-stealth
https://github.com/berstend/puppeteer-extra/tree/master/packages/puppeteer-extra-plugin-stealth
https://github.com/berstend/puppeteer-extra/tree/master/packages/puppeteer-extra-plugin-stealth
https://www.npmjs.com/package/regenerator-runtime
https://www.npmjs.com/package/regenerator-runtime
https://www.apple.com/safari/docs/Safari_White_Paper_Nov_2019.pdf
https://www.apple.com/safari/docs/Safari_White_Paper_Nov_2019.pdf
https://www.ecma-international.org/ecma-262/6.0/
https://www.ecma-international.org/ecma-262/6.0/
https://www.chromium.org/Home/chromium-privacy/privacy-sandbox
https://www.chromium.org/Home/chromium-privacy/privacy-sandbox
https://www.torproject.org/
https://www.w3.org/TR/tracking-dnt/
https://www.w3.org/TR/tracking-dnt/
https://w3ctag.github.io/unsanctioned-tracking/
https://w3ctag.github.io/unsanctioned-tracking/

136 ESSENTIALFP: EXPOSING THE ESSENCE OF BROWSER FINGERPRINTING

[41] What’s Brave Done For My Privacy Lately? Episode #3: Finger-
print Randomization. https://brave.com/whats-brave-done-for-my-
privacy-lately-episode3/, accessed: May-2020.

[42] window-crypto. https://www.npmjs.com/package/window-crypto, ac-
cessed: May-2020.

[43] Window.crypto. https://developer.mozilla.org/en-US/docs/Web/API/
Window/crypto, accessed: May 2020.

[44] G. Acar, C. Eubank, S. Englehardt, M. Juarez, A. Narayanan, and C. Diaz.
The Web Never Forgets: Persistent Tracking Mechanisms in the Wild.
In Proceedings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security, Scottsdale, AZ, USA, November 3-7, 2014, pages
674-689, 2014.

[45] G. Acar, M. Juarez, N. Nikiforakis, C. Diaz, S. F. Giirses, F. Piessens,
and B. Preneel. FPDetective: dusting the web for fingerprinters. In
2013 ACM SIGSAC Conference on Computer and Communications Security,
CCS'13, Berlin, Germany, November 4-8, 2013, pages 1129-1140, 2013.

[46] E. Alaca and P. C. van Oorschot. Device fingerprinting for augmenting
web authentication: classification and analysis of methods. In ACSAC,
pages 289-301. ACM, 2016.

[47] B. A. Azad, O. Starov, P. Laperdrix, and N. Nikiforakis. Web Runner
2049: Evaluating Third-Party Anti-bot Services. In 17th Conference on
Detection of Intrusions and Malware & Vulnerability Assessment (DIMVA
2020), Lisboa, Portugal, June 24-26, 2020, 2020.

[48] M. Balliu, D. Schoepe, and A. Sabelfeld. We are family: Relating
information-flow trackers. In ESORICS, volume 10492 of Lecture Notes
in Computer Science, pages 124-145. Springer, 2017.

[49] E. Besson, N. Bielova, and T. P. Jensen. Browser randomisation against
fingerprinting: A quantitative information flow approach. In Secure IT
Systems - 19th Nordic Conference, NordSec 2014, Tromsa, Norway, October
15-17, 2014, Proceedings, pages 181-196, 2014.

[50] Y. Cao, S. Li, and E. Wijmans. (Cross-)Browser Fingerprinting via OS
and Hardware Level Features. In 24th Annual Network and Distributed
System Security Symposium, NDSS 2017, San Diego, California, USA, Febru-
ary 26 - March 1, 2017, 2017.

https://brave.com/whats-brave-done-for-my-privacy-lately-episode3/
https://brave.com/whats-brave-done-for-my-privacy-lately-episode3/
https://www.npmjs.com/package/window-crypto
https://developer.mozilla.org/en-US/docs/Web/API/Window/crypto
https://developer.mozilla.org/en-US/docs/Web/API/Window/crypto

8 BIBLIOGRAPHY 137

[51] C. Cimpanu. Ad Network Uses DGA Algorithm to By-
pass Ad Blockers and Deploy In-Browser Miners. https:
//www.bleepingcomputer.com/news/security/ad-network-uses-dga-
algorithm-to-bypass-ad-blockers-and-deploy-in-browser-miners/,
accessed: May 2020.

[52] D.E. Denning and P. J. Denning. Certification of Programs for Secure
Information Flow. Commun. ACM, 20(7):504-513, 1977.

[53] P. Eckersley. How Unique Is Your Web Browser? In Privacy Enhancing
Technologies, 10th International Symposium, PETS 2010, Berlin, Germany,
July 21-23, 2010. Proceedings, pages 1-18, 2010.

[54] S. Englehardt and A. Narayanan. Online Tracking: A 1-million-site
Measurement and Analysis. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, Vienna, Austria,
October 24-28, 2016, pages 1388-1401, 2016.

[55] A.FaizKhademi, M. Zulkernine, and K. Weldemariam. Fpguard: Detec-
tion and prevention of browser fingerprinting. In Data and Applications
Security and Privacy XXIX - 29th Annual IFIP WG 11.3 Working Confer-
ence, DBSec 2015, Fairfax, VA, USA, July 13-15, 2015, Proceedings, pages
293-308, 2015.

[56] A. Gémez-Boix, D. Frey, Y. Bromberg, and B. Baudry. A Collabora-
tive Strategy for Mitigating Tracking through Browser Fingerprint-
ing. In Proceedings of the 6th ACM Workshop on Moving Target Defense,
MTD@CCS 2019, London, UK, November 11, 2019, pages 67-78, 2019.

[57] A. Gémez-Boix, P. Laperdrix, and B. Baudry. Hiding in the Crowd: an
Analysis of the Effectiveness of Browser Fingerprinting at Large Scale.
In Proceedings of the 2018 World Wide Web Conference on World Wide Web,
WWW 2018, Lyon, France, April 23-27, 2018, pages 309-318, 2018.

[58] G. G. Gulyas, D. F. Somé, N. Bielova, and C. Castelluccia. To extend or
not to extend: On the uniqueness of browser extensions and web logins.
In Proceedings of the 2018 Workshop on Privacy in the Electronic Society,
WPES@CCS 2018, Toronto, ON, Canada, October 15-19, 2018, pages 14-27,
2018.

[59] D. Hedin, L. Bello, and A. Sabelfeld. Information-flow security for
javascript and its apis. Journal of Computer Security, 24(2):181-234, 2016.

[60] D. Hedin, A. Birgisson, L. Bello, and A. Sabelfeld. Jsflow: tracking
information flow in javascript and its apis. In Symposium on Applied

https://www.bleepingcomputer.com/news/security/ad-network-uses-dga-algorithm-to-bypass-ad-blockers-and-deploy-in-browser-miners/
https://www.bleepingcomputer.com/news/security/ad-network-uses-dga-algorithm-to-bypass-ad-blockers-and-deploy-in-browser-miners/
https://www.bleepingcomputer.com/news/security/ad-network-uses-dga-algorithm-to-bypass-ad-blockers-and-deploy-in-browser-miners/

138

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

ESSENTIALFP: EXPOSING THE ESSENCE OF BROWSER FINGERPRINTING

Computing, SAC 2014, Gyeongju, Republic of Korea - March 24 - 28, 2014,
pages 1663-1671, 2014.

D. Hedin and A. Sabelfeld. Information-flow security for a core of
javascript. In 25th IEEE Computer Security Foundations Symposium, CSF
2012, Cambridge, MA, USA, June 25-27, 2012, pages 3-18, 2012.

D. Hedin and A. Sabelfeld. A perspective on information-flow control.
In Software Safety and Security, volume 33 of NATO Science for Peace
and Security Series - D: Information and Communication Security, pages
319-347. 10S Press, 2012.

D. Jang, R. Jhala, S. Lerner, and H. Shacham. An empirical study of
privacy-violating information flows in javascript web applications. In
ACM Conference on Computer and Communications Security, pages 270-
283. ACM, 2010.

H. Jonker, B. Krumnow, and G. Vlot. Fingerprint Surface-Based De-
tection of Web Bot Detectors. In Computer Security - ESORICS 2019 -
24th European Symposium on Research in Computer Security, Luxembourg,
September 23-27, 2019, Proceedings, Part 11, pages 586-605, 2019.

S. Khattak, D. Fifield, S. Afroz, M. Javed, S. Sundaresan, D. McCoy,
V. Paxson, and S. J. Murdoch. Do You See What I See? Differential
Treatment of Anonymous Users. In 23rd Annual Network and Distributed
System Security Symposium, NDSS 2016, San Diego, California, USA, Febru-
ary 21-24, 2016, 2016.

P. Laperdrix. Browser Fingerprinting: An Introduction and the Chal-
lenges Ahead. https://blog.torproject.org/browser-fingerprinting-
introduction-and- challenges-ahead, accessed: May 2020.

P. Laperdrix, G. Avoine, B. Baudry, and N. Nikiforakis. Morellian Anal-
ysis for Browsers: Making Web Authentication Stronger with Canvas
Fingerprinting. In Detection of Intrusions and Malware, and Vulnerabil-
ity Assessment - 16th International Conference, DIMVA 2019, Gothenburg,
Sweden, June 19-20, 2019, Proceedings, pages 43—66, 2019.

P. Laperdrix, B. Baudry, and V. Mishra. FPRandom: Randomizing Core
Browser Objects to Break Advanced Device Fingerprinting Techniques.
In Engineering Secure Software and Systems - 9th International Symposium,
ESSoS 2017, Bonn, Germany, July 3-5, 2017, Proceedings, pages 97-114,
2017.

P. Laperdrix, N. Bielova, B. Baudry, and G. Avoine. Browser fingerprint-
ing: A survey. ACM Trans. Web, 14(2):8:1-8:33, 2020.

https://blog.torproject.org/browser-fingerprinting-introduction-and-challenges-ahead
https://blog.torproject.org/browser-fingerprinting-introduction-and-challenges-ahead

8 BIBLIOGRAPHY 139

[70] P. Laperdrix, W. Rudametkin, and B. Baudry. Mitigating Browser Fin-
gerprint Tracking: Multi-level Reconfiguration and Diversification. In
10th IEEE/ACM International Symposium on Software Engineering for Adap-
tive and Self-Managing Systems, SEAMS 2015, Florence, Italy, May 18-19,
2015, pages 98-108, 2015.

[71] J. Magazinius, D. Hedin, and A. Sabelfeld. Architectures for inlining
security monitors in web applications. In J. Jiirjens, F. Piessens, and
N. Bielova, editors, Engineering Secure Software and Systems, pages 141-
160, Cham, 2014. Springer International Publishing.

[72] J. R. Mayer. Any person... a pamphleteer”: Internet Anonymity in
the Age of Web 2.0. Undergraduate Senior Thesis, Princeton University,
page 85, 2009.

[73] K. Mowery and H. Shacham. Pixel Perfect: Fingerprinting Canvas in
HTMLS. In Web 2.0 Security and Privacy (W2SP), 2012.

[74] M. Mulazzani, P. Reschl, M. Huber, M. Leithner, S. Schrittwieser, and
E. Weippl. Fast and Reliable Browser Identification with JavaScript
Engine Fingerprinting. In Web 2.0 Workshop on Security and Privacy
(W2SP), Vol. 5, 2013.

[75] N. Nikiforakis, W. Joosen, and B. Livshits. PriVaricator: Deceiving Fin-
gerprinters with Little White Lies. In Proceedings of the 24th International
Conference on World Wide Web, WWW 2015, Florence, Italy, May 18-22,
2015, pages 820-830, 2015.

[76] N. Nikiforakis, A. Kapravelos, W. Joosen, C. Kruegel, F. Piessens, and
G. Vigna. Cookieless Monster: Exploring the Ecosystem of Web-Based
Device Fingerprinting. In 2013 IEEE Symposium on Security and Privacy,
SP 2013, Berkeley, CA, USA, May 19-22, 2013, pages 541-555, 2013.

[77] A.Sabelfeld and A. C. Myers. Language-based information-flow secu-
rity. IEEE |. Sel. Areas Commun., 21(1):5-19, 2003.

[78] 1. Sanchez-Rola, 1. Santos, and D. Balzarotti. Extension breakdown:
Security analysis of browsers extension resources control policies. In
26th USENIX Security Symposium, USENIX Security 2017, Vancouver, BC,
Canada, August 16-18, 2017, pages 679-694, 2017.

[79] 1. Sanchez-Rola, I. Santos, and D. Balzarotti. Clock around the clock:
Time-based device fingerprinting. In Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security, CCS 2018,
Toronto, ON, Canada, October 15-19, 2018, pages 1502-1514, 2018.

140

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

ESSENTIALFP: EXPOSING THE ESSENCE OF BROWSER FINGERPRINTING

A.Sjosten, S. V. Acker, P. Picazo-Sanchez, and A. Sabelfeld. Latex gloves:
Protecting browser extensions from probing and revelation attacks. In
26th Annual Network and Distributed System Security Symposium, NDSS
2019, San Diego, California, USA, February 24-27, 2019, 2019.

A. Sjosten, S. V. Acker, and A. Sabelfeld. Discovering browser exten-
sions via web accessible resources. In Proceedings of the Seventh ACM
Conference on Data and Application Security and Privacy, CODASPY 2017,
Scottsdale, AZ, USA, March 22-24, 2017, pages 329-336, 2017.

A. Sjosten, D. Hedin, and A. Sabelfeld. Information flow tracking
for side-effectful libraries. In C. Baier and L. Caires, editors, Formal
Techniques for Distributed Objects, Components, and Systems - 38th IFIP
WG 6.1 International Conference, FORTE 2018, Held as Part of the 13th
International Federated Conference on Distributed Computing Techniques,
DisCoTec 2018, Madrid, Spain, June 18-21, 2018, Proceedings, volume 10854
of Lecture Notes in Computer Science, pages 141-160. Springer, 2018.

C. Staicu, D. Schoepe, M. Balliu, M. Pradel, and A. Sabelfeld. An
Empirical Study of Information Flows in Real-World JavaScript. In
PLAS, 2019.

O. Starov, P. Laperdrix, A. Kapravelos, and N. Nikiforakis. Unnecessar-
ily identifiable: Quantifying the fingerprintability of browser extensions
due to bloat. In The World Wide Web Conference, WWW 2019, San Fran-
cisco, CA, USA, May 13-17, 2019, pages 3244-3250, 2019.

O. Starov and N. Nikiforakis. XHOUND: quantifying the fingerprint-
ability of browser extensions. In 2017 IEEE Symposium on Security and
Privacy, SP 2017, San Jose, CA, USA, May 22-26, 2017, pages 941-956,
2017.

C. F. Torres, H. L. Jonker, and S. Mauw. Fp-block: Usable web privacy
by controlling browser fingerprinting. In Computer Security - ESORICS
2015 - 20th European Symposium on Research in Computer Security, Vienna,
Austria, September 21-25, 2015, Proceedings, Part II, pages 3-19, 2015.

E. Trickel, O. Starov, A. Kapravelos, N. Nikiforakis, and A. Doupé.
Everyone is Different: Client-side Diversification for Defending Against
Extension Fingerprinting. In 28th USENIX Security Symposium, USENIX
Security 2019, Santa Clara, CA, USA, August 14-16, 2019, pages 1679-1696,
2019.

A. Vastel, P. Laperdrix, W. Rudametkin, and R. Rouvoy. FP-Scanner:
The Privacy Implications of Browser Fingerprint Inconsistencies. In

8 BIBLIOGRAPHY 141

27th USENIX Security Symposium, USENIX Security 2018, Baltimore, MD,
USA, August 15-17, 2018, pages 135-150, 2018.

[89] A. Vastel, P. Laperdrix, W. Rudametkin, and R. Rouvoy. FP-STALKER:
Tracking Browser Fingerprint Evolutions. In 2018 IEEE Symposium on
Security and Privacy, SP 2018, Proceedings, 21-23 May 2018, San Francisco,
California, USA, pages 728-741, 2018.

[90] T. Yen, Y. Xie, E. Yu, R. P. Yu, and M. Abadi. Host fingerprinting and
tracking on the web: Privacy and security implications. In 19th Annual
Network and Distributed System Security Symposium, NDSS 2012, San
Diego, California, USA, February 5-8, 2012, 2012.

142 ESSENTIALFP: EXPOSING THE ESSENCE OF BROWSER FINGERPRINTING

Paper IV

Discovering Browser Extensions via
Web Accessible Resources

Alexander Sjosten, Steven Van Acker, Andrei Sabelfeld

Proceedings of the Seventh ACM Conference on Data and Application Security and
Privacy (CODASPY), Scottsdale, AZ, USA, March 2017

143

1 INTRODUCTION 145

Abstract

Browser extensions provide a powerful platform to enrich browsing
experience. At the same time, they raise important security questions.
From the point of view of a website, some browser extensions are in-
vasive, removing intended features and adding unintended ones, e.g.
extensions that hijack Facebook likes. Conversely, from the point of
view of extensions, some websites are invasive, e.g. websites that bypass
ad blockers. Motivated by security goals at clash, this paper explores
browser extension discovery, through a non-behavioral technique, based
on detecting extensions’ web accessible resources. We report on an em-
pirical study with free Chrome and Firefox extensions, being able to
detect over 50% of the top 1,000 free Chrome extensions, including pop-
ular security- and privacy-critical extensions such as AdBlock, LastPass,
Avast Online Security, and Ghostery. We also conduct an empirical study
of non-behavioral extension detection on the Alexa top 100,000 websites.
We present the dual measures of making extension detection easier in
the interest of websites and making extension detection more difficult in
the interest of extensions. Finally, we discuss a browser architecture that
allows a user to take control in arbitrating the conflicting security goals.

1 Introduction

Browser extensions provide a powerful platform to enrich browsing experi-
ence. The Chrome web store currently contains around 43,000 free extensions,
with many of these extensions, such as AdBlock, Adobe Acrobat, and Skype,
having more than 10,000,000 users.

From the security point of view, browser extensions are deployed as
a “man in the browser” [30], implying that extensions have privileges to
arbitrarily alter the behavior of webpages. Naturally, the power of browser
extensions creates tension between the security goals of the webpages and
those of the extensions themselves. Let us consider some representative
scenarios to illustrate the challenges in balancing these goals.

The first and second scenarios present an exclusive point of view of
websites, concerned with malicious extensions. The third scenario presents
an exclusive view of extensions, concerned with malicious websites. The
fourth scenario illustrates legitimate synergies between websites and exten-
sions. Finally, the fifth scenario illustrates the security goals of websites and
extensions at outright clash.

Bank scenario Bank webpages manipulate sensitive information whose
unauthorized access may lead to financial losses. It is desirable to detect
potentially insecure and vulnerable extensions and prevent extensions from
injecting third-party scripts into the bank’s webpages. The latter technique

146 DISCOVERING BROWSER EXTENSIONS VIA WEB ACCESSIBLE RESOURCES

is in fact a common practice for many extensions [31, 35]. This scenario
motivates the goal of discovering browser extensions, as the knowledge of
what extensions run on the webpage can be used for tuning the defense.

Facebook scenario With over a billion daily users [18], Facebook is a popu-
lar target for attacks. Since the Facebook application itself is relatively well
protected from attacks like cross-site scripting, attackers look for attacks else-
where. A prevalent threat to user integrity and confidentiality is the use of
browser extensions to inject scripts into the Facebook application to gain full
access to the user’s account [15]. Jagpal et al. [35] identify Facebook as the
number one target for malicious extensions, reporting on the proliferation
of attacks such as fake content (ad or otherwise) injection and information
stealing.

This scenario motivates the need for recognizing browser extensions by
webpages. Having an extension detection technique available, the webpage
can adapt its behavior to the extensions installed. Research by Facebook’s
anti-abuse team confirms that this is a realistic scenario [15].

LastPass scenario LastPass [38] is a password manager that permits users
to only remember one master password while automatically generating,
storing, and filling in passwords for the individual services. The LastPass
Chrome extension has currently over 4,000,000 users. Being a sensitive ex-
tension, LastPass has been subject to attacks. For example, LostPass [39] is a
“pixel-perfect phishing” attack that exploits the fact that LastPass displays its
notification in the browser viewport. LostPass fakes a message of an expired
session and redirects users to a fake login page where it harvests the master
password. (LastPass subsequently responded by interface measures and
asking for email confirmation for all logins from new IPs [37].)

This scenario motivates the need to protect sensitive extensions. Being
able to detect LastPass is a trigger for phishing attacks via a malicious
webpage, as in the case of LostPass. It is in the interest of LastPass to stay
undetected. Similar scenarios arise with extensions such as Avast Online
Security and Ghostery, popular security- and privacy-critical extensions that
can be targeted by malicious websites.

Google Cast scenario Google Cast [29] is a popular extension to play con-
tent on a Chromecast device from Chrome. Upon detecting the Google Cast
extension, websites like Twitch.tv adjust their functionality and offer richer
features.

This scenario highlights the benefit of browser extension detection, as
motivated by enriching functionality rather than by security considerations.

AdBlock scenario With over 40,000,000 users, AdBlock is currently the
most popular Chrome extension [12]. It is in the very nature of ad blocking

1 INTRODUCTION 147

to modify webpages, looking for ads and blocking them. These goals are
clearly at odds with the webpages’ goals. Consequently, some webpages try
to detect ad blockers.

This scenario motivates both the need for extension detection from the
point of view of webpages and the need for evading discovery from the ad
blockers” point of view. As we detail in Section 2, the state of the art for this
scenario is much of a cat-and-mouse game.

Security goals at clash The above scenarios demonstrate that the differ-
ent stakeholders (websites vs. browser extensions) have different interests,
resulting in the clash of the respective security goals. Motivated by these
security goals, this paper focuses on discovering browser extensions and
pursues the following research questions: (i) How to discover browser ex-
tensions from within a webpage, i.e, without modifying the browser? and
(i) How can extensions evade detection?

We emphasize that this paper does not assume the interest of webpages
over the interest of extensions or vice versa. Instead, we recognize that
these different interests are legitimate, even if conflicting. We seek to better
understand these interests, conceptually and empirically, and suggest steps
to improve the state of the art on both sides.

Non-behavioral extension discovery We refer as behavioral to extension dis-
covery techniques that require analyzing the behavior of browser extensions.
Behavioral detection is sometimes desirable, when a particular behavior
needs to be detected, regardless of what extension triggers it. On the other
hand, non-behavioral discovery detects extensions without having to analyze
their behavior. Non-behavioral detection is attractive when it can be done
with low efforts. This motivates our focus on non-behavioral techniques.

In similar vein, when we consider measures against extension discov-
ery, our goal is to stop non-behavioral detection and force attackers to do
behavioral analysis of extensions.

Discovery via web accessible resources We explore a non-behavioral tech-
nique for discovering extensions, based on so called web accessible resources
and implement it for detecting Chrome and Firefox extensions. Web accessi-
ble resources are the resources accessible in the context of a webpage. These
resources enable interaction of extensions with the user via the underlying
webpages.

While there are other, more elaborate, ways to set up this kind of in-
teraction without web accessible resources (see Sections 3.2 and 6.2), web
accessible resources provide a straightforward mechanism of direct access
via URIs. Indeed, as we will see later, web accessible resources are used by
many popular extensions.

148 DISCOVERING BROWSER EXTENSIONS VIA WEB ACCESSIBLE RESOURCES

Our detection is precise, in the sense of no false positives, and robust,
as long as extensions require web accessible resources. While behavioral
techniques may mistakenly detect an extension based on a monitored behav-
ior, our technique is based on detecting resources that are bound to unique
extension ids, implying that we never report an extension that is not present.

Contributions To the best of our knowledge, this work is the first compre-
hensive effort on non-behavioral extension detection, putting the spotlight
on a largely unexplored area and systematically studying the technique and
its applicability at large scale. To this end, the paper offers the following
contributions:

Precise non-behavioral extension discovery We investigate a
non-behavioral extension detection technique, based on web accessible
resources (Section 3). Based on unique extension ids, our detection
is precise, in the sense of no false positives, and robust, as long as
extensions require web accessible resources.

Empirical studies of Chrome and Firefox extensions We report on a em-
pirical study with Chrome’s free extensions where we detect over 50%
of the top 1,000 free Chrome extensions, including popular security-
and privacy-critical extensions such as AdBlock, LastPass, Avast On-
line Security, and Ghostery, and 28% of the Chrome extensions in the
study overall (Section 4).

We report on a similar study with Firefox’s free extensions (Section 4).
Due to Firefox’s lax architecture, extensions are not prevented from
direct modifications to the UI of the browser. This explains the lesser
need for web accessible resources in Firefox extensions and, therefore,
lower discovery rates.

Demo webpage for Chrome and Firefox We provide a demo webpage [60]
to demonstrate discovery of Chrome and Firefox extensions in practice.
This proof-of-concept webpage lists detected extensions once a user
visits the page with Chrome or Firefox. This page serves as a start-
ing point, providing a core that can be further developed either as a
standalone service or a library for inclusion into other webpages. In
fact, our code is already used by INRIA’s Browser Extension Experi-
ment [34].

Empirical studies of the Alexa top 100,000 websites We conduct an empir-
ical study of non-behavioral extension discovery on the Alexa top
100,000 websites. Our findings suggest that the technique is not widely

2 STATE-OF-THE-ART ARMS RACE 149

known, although we do discover several websites that try to find ex-
tensions for types that include fun, productivity, news, weather, search
tools, developer tools, accessibility, and shopping (Section 5).

Measures We discuss two types of measures that correspond to the interests
of webpages and extensions, respectively. For webpages, we discuss
a solution based on extension whitelisting. For extensions, we have
recommendations to restrict APIs related to web accessible resources
and webpage whitelisting (Section 6). We also discuss behavioral tech-
niques and argue that to be effective, they need to be extension-specific.

2 State-of-the-art arms race

The state of the art is best illustrated with the arms race between ad blockers
and ad blocker detectors, with its rival spirit captured by the (blatantly
explicit) naming of the respective libraries.

Whenever an extension manipulates the webpage’s DOM, it can be
discovered using behavioral analysis. For instance, a webpage can discover
an ad blocker when the latter removes an ad from the webpage. Since ad
blockers act as good examples of security goals at clash, the rest of this
section will focus on the arms race between webpages and ad blockers.
Table 4.1 summarizes the steps in this arms race.

A straightforward approach to check for ad blockers is to create a fake
ad which sets a global variable and then check for that specific variable.
Figure 4.1 displays a current solution [33] which works in AdBlock, AdBlock
Plus and AdBlock Pro for Chrome, as well as AdBlock Plus for Firefox, where
the default behavior is to block the execution of the file showads. js.

Such a useful behavioral technique is often prepackaged as a JavaScript
library marketed for detecting ad blockers, called "anti ad blockers". One
such example is F*AdBlock (FAB) [13], which helps the users do behavioral
analysis during a user-specified time interval. If a certain (user defined)
amount of negative results in a row occurs, no ad-blocking tools are deemed
to be running. This means the check can be run multiple times, making it
harder for ad blockers to hide their presence by delaying their interaction.

Just as there are tools designed to help detect ad blockers, there are also
tools that detect anti ad blockers. The library F***F***AdBlock (FFAB) [41] is
an anti anti ad blocker created as a response to the anti ad blocker FAB. FFAB
redefines some JavaScript function objects used during FAB’s execution,
overriding FAB’s ad blocker detection mechanism and claims no ad blockers
are detected.

But just as FAB is sensitive to behavioral analysis, so is FFAB. In turn,
PP p** AdBlock (FFEAB) [16], is a response to FFAB. FFAB itself is not

150 DISCOVERING BROWSER EXTENSIONS VIA WEB ACCESSIBLE RESOURCES

<script src="showads.js">
<script>
if(window.canRunAds === undefined)
{
// Ad blocking detected
}

</script>

NOY Ul W N =

(a) HTML part of fake ad

1 var canRunAds = true;

(b) showads.js (fake ad)
Figure 4.1: Ad-blocking behavioral detection

Table 4.1: Ad blocking arms race
AdBlock Remove ads

FAB Injects bait for AdBlock and analyzes
behavior

FFAB Exploits global property in window ob-
ject set by FAB

FFFAB Detects if FFAB has done anything, re-
verts the changes

careful enough when overriding FAB’s code, which gives FFFAB an oppor-
tunity to detect when FAB’s code has been tampered with. When FFFAB
detects this manipulation, it restores the original FAB functionality.

Detection of extensions by webpages is possible if the extension somehow
modifies the DOM. In addition, behavioral detection is usually cross-browser,
as the same behavior will take place no matter which browser is used.

If webpages are forced into behavioral extension detection, they cannot
easily determine which extension is causing the behavior, and the extension
detection loses precision. If they instead find extensions using unique ids,
the extension name for Firefox extensions or a 32-character textual token
for Chrome extensions, the extension can be uniquely determined and the
detection is exact.

As this arms race indicates, behavioral extension detection is both error-
prone because it is imprecise, and costly because it requires time and effort
to keep up with the latest evasion techniques. These reasons motivate the
need for a more robust and cheaper technique, bringing us to the study of
non-behavioral extension detection in the following sections.

3 FINDING EXTENSIONS VIA WEB ACCESSIBLE RESOURCES 151

« > C
[Firefox: moz-extension://<extensionid>/resource
[Firefox: chrome://<packagename>/resource]
@ —1 P
| [Chrome: chrome—extension://<ex£e'nsionid>/resource] resource
web page browser extension

Figure 4.2: Extension - webpage overview

3 Finding extensions via web accessible resources

This section provides background on how browser extensions work in
Chrome and Firefox, the role of web accessible resources, how they can
be used for finding extensions and the attacker models considered in this
work.

3.1 Extensions

An extension is a program, typically written in a combination of JavaScript,
HTML and CSS to extend the browser functionality. Extensions are not to
be confused with browser plugins, such as Flash and Java, that are compiled
and loadable modules that may live outside the browsers’ process space.
Extensions may alter the content of a webpage (e.g. ad blockers) or add
features such as executing personal scripts (e.g. Greasemonkey). Browser
extensions are built using architectures defined by the browser vendors.
Mozilla is currently working on WebExtensions [52], a new API which will
have a similar structure as the Chrome extension API. Figure 4.2 depicts the
architecture that connects extensions and a webpage.

Chrome extensions Chrome extensions can consist of three different

parts [28]: (i) a background page, which is an invisible page containing the
main logic of the extension; (ii) Ul pages, ordinary HTML pages that display
the extension’s Ul ("browser actions" [22] and "page actions" [23]); and (iii)
a content script, JavaScript which executes in the context of the webpage.
The content script makes the interaction with the webpage and runs in an

152 DISCOVERING BROWSER EXTENSIONS VIA WEB ACCESSIBLE RESOURCES

isolated world [24]. It has access to some Chrome APIs and can communicate
with the background page using message passing [27].

Each Chrome extension must have a manifest file, manifest.json, which
contains important information about the extension [26]. For this work, the
only interesting section in the manifest file is web_accessible_resources, which
defines which resources are accessible in the context of a webpage [25]. The
content of the web_accessible_resources section is paths to files. They can be
URLs or a path to files relative to the package root and can contain wildcards.

Firefox extensions Firefox extensions written using WebExtensions will
have the same structure as Chrome extensions. This is because Chrome
extensions should be easy to port to Firefox [50], as well as having a more
unified cross-browser architecture.

For the rest of this section, we will focus on XUL/XPCOM extensions.
As this is how most Firefox extensions currently are written, we will refer
to them as "Firefox extensions". These extensions also uses manifest files.
The extensions automatically read the file chrome.manifest in the extension’s
root [44, 47]. Differently from Chrome, manifest files in Firefox are not
mandatory and one manifest file can refer to other manifest files in sub
folders.

Similarly to Chrome, a content script can inject and alter content on
the webpage and communicate with the background pages using message
passing [46, 45]. In the file chrome.manifest, a flag contentaccessible, which
when set to yes, makes the specified content web accessible [44].

Differently from Chrome and WebExtensions, Firefox extensions have
powerful features such as overlay, to describe extra content to the UI [54]
and override, to override a chrome file provided by the application [44].

3.2 Web accessible resources

Both Chrome and Firefox require that extension resources that are referenced
in a regular webpage, are flagged as web accessible in the manifest files. In
Chrome and WebExtensions this is done with the key “web_accessible_resources”
[25, 51] and in Firefox extensions with “contentaccessible=yes” [44].

If a Chrome content script injects resources into a webpage, the resource
must be flagged as web accessible. This makes the resource available us-
ing the following schema: chrome-extension://<extensionid>/<pathToFile>,
where <extensionid> is a unique identifier for each extension and
<pathToFile> is the same as the relative URL from the package root [28].

Similarly for Firefox, if resources from the extension are to be referenced
by an untrusted part using or <script> tags, the corresponding regis-
tered content package must be flagged with contentaccessible=yes. Doing

3 FINDING EXTENSIONS VIA WEB ACCESSIBLE RESOURCES 153

this would allow for the webpage to load resources from the extension, e.g.
images to an tag [44]. The content can then be accessed using the
chrome://packagename/content/ schema [44], where the packagename should
be unique for all extensions. For WebExtensions, the content can be accessed
with moz-extension://<extensionid>/<pathToFile> [51].

Examples of web accessible resources in practice To illustrate web acces-
sible resources and how they differ in Firefox and Chrome, consider two
real-world examples: AdBlock and LastPass.

AdBlock for Chrome displays an icon in the browser toolbar which
seemingly triggers a popup. This popup is actually an HTML page which
loads JavaScript code to interact with the user. Both the HTML and JavaScript
files are web accessible resources and must be listed as such [25].

When logging in to a new website with a password, LastPass for Chrome
will prompt the user whether this password should be stored. This prompt is
actually an “overlay” injected and rendered into the viewport of the visited
webpage. The overlay is an HTML resource provided by the extension
and marked as web accessible. LastPass for Firefox uses a slightly different
approach because Firefox extensions have the ability to modify the browser
chrome through XML User Interface Language (XUL). Because this XUL file
is only part of the browser chrome it does not need to be accessible from
the visited webpage. Therefore, it does not need to be marked as a web
accessible resource.

Benefits with web accessible resources While web accessible resources are
a convenience, it is possible to do without them. Resources can be repre-
sented as strings using data URIs [40], which can be added to the created
DOM element before injecting it to the webpage. It is also possible to store
the resources on an external server and fetch them from there. However, both
of these approaches have disadvantages. Encoding and injecting resources
as strings can be difficult to maintain, and storing resources on an external
server has potential privacy and security issues.

By using web accessible resources, the resources are stored within the
extension. This make them easier to maintain and access with extension
APIs.

Finding extensions via web accessible resources Because web accessi-
ble resources can be accessed in the context of a given webpage, they can
be abused to detect the presence of browser extensions to which the re-
sources belong. As mentioned above, LastPass for Chrome has the overlay
file overlay.html marked as web accessible, making it possible to make a
request for the file using e.g. XMLHttpRequest. If the resource is present,

154 DISCOVERING BROWSER EXTENSIONS VIA WEB ACCESSIBLE RESOURCES

the request will receive a positive answer, indicating that the extension is
installed.

In Firefox, the extension Firebug has contentaccessible=yes set. Similarly
to LastPass in Chrome, this makes Firebug detectable without behavior
analysis, as the resource can be loaded to a script tag, using onsuccess and
onerror to check if the extension is present or not.

Note that thanks to the uniqueness of the extension ids, we obtain a
detection technique without false positives. While there is no guarantee that
the behavioral techniques precisely detect a given extension, we never report
an extension that is not present. Compared to behavioral techniques that
may have both false positives and negatives, finding extensions via web
accessible resources may have false negatives but no false positives.

Using CSP for finding extensions Content Security Policy (CSP) allows
websites to whitelist where resources are loaded from [64]. One potential
way of finding extensions is when they inject their web accessible resources
into the webpage. Since one can define where to load e.g. scripts and images
from in the CSP, restricting the CSP to not allow for an extension could
in theory be possible. However, we found that both Chrome and Firefox
allow chrome-extension:// and chrome:// URLSs respectively to be injected
by the extension, no matter what the CSP is, as long as they are flagged
as web_accessible_resources and contentaccessible. If the injected script
from the extensions is from a separate server, it will be blocked if it violates
the CSP [31]. WebExtensions will not enforce CSP for the extensions [53].

3.3 Two attacker models

Recall that we are interested in two perspectives on extension detection: that
of a webpage with the goal to enable extension detection (as in the Bank
and Facebook scenarios) and that of an extension with the goal to remain
hidden (as in the LastPass scenario). Consequently, this yields two attacker
models. The first attacker model corresponds to a malicious extension that
has been installed on a user’s browser, e.g., to leak bank data or hijack
likes. The challenge is to detect such extensions. The second attacker model
corresponds to a malicious webpage that tries to thwart the functionality of
a legitimate extension, e.g., by blocking ads or phishing. The challenge here
is to prevent detection of such extensions. In this paper, we address both
perspectives, even if their goals are by nature conflicting.

4 EMPIRICAL STUDY OF CHROME AND FIREFOX EXTENSIONS 155

4 Empirical study of Chrome and Firefox extensions

This section reports on an empirical study to analyze how susceptible free
extensions are to be found via web accessible resources.

The study was performed by downloading all free extensions from
Chrome web store [21] and Mozilla’s add-on store [48], extracting and ana-
lyzing their manifest files. The extensions were downloaded in September
2016.

4.1 Chrome

As mentioned in Section 3.1, web_accessible_resources in the manifest file can
be used to determine extension detection via web accessible resources. If
the manifest file does not contain the section web_accessible_resources, the
extension cannot be detected using this technique. If the only accessible
resources of an extension are URLs, we deem the extension non-detectable
without behavioral analysis.

A total of 43,429 extensions were downloaded. However, the total amount
of extensions where the user statistics were found by the scraper was 43,197
(~99.5% of all downloaded extensions). The reason for this drop is that some
extensions were removed from the Chrome web store before the scraper had
the time to retrieve the user statistics, whereas some extensions (like Google
Cast) did not display user statistics.

Results Table 4.2 displays the results of testing all downloaded Chrome ex-
tensions for web_accessible_resources. The parsing of the manifest files yielded
parse errors for 36 extensions, for which we manually edited the manifest
files to remove the errors.

We note that 148 extensions have web_accessible_resources set to an empty
array in the manifest file, which implies that these extensions have no web
accessible resources. Similarly, the 54 extensions which only have URLs
as web accessible resources cannot be found with our technique as they
do not have resources that should run in the context of the website stored
locally in the extension. The “No accessible resources” in Table 4.2 are all
the extensions where the web_accessible_resources field was missing in the
manifest file, including 146 extensions which had only non-existing resources
listed.

In total, 12,154 extensions out of 43,429 could be found using non-
behavioral extension detection, which corresponds to ~28%. Figure 4.3a
shows the amount of detectable extensions sorted by popularity, based on
the reported number of users in the Google Chrome web store. For this, we
only use the set of extensions for which we could find user statistics, yielding
12,112 extensions detectable out of 43,197. We divide the sorted extensions

156 DISCOVERING BROWSER EXTENSIONS VIA WEB ACCESSIBLE RESOURCES

Table 4.2: Chrome and Firefox extension results

Category Chrome | Firefox
Empty accessible resources | 148 -

Only URLs 54 -

No manifest file - 7,396
Detectable 12,154 1,003
No accessible resources 31,073 6,497
Total amount of extensions | 43,429 14,896

2
K < 100 | -
g 400 gg
2 5
S 3
2 200 5 50 H H |
: * LA s
) |
0 I T T T T T T T T 1 T T H T ’_‘
0 5000 1000015000 20000 25000 30000 35000 40000 45000 1000 5000 10000 15000
Extension popularity rank Extension popularity rank
(a) Chrome (b) Firefox

Figure 4.3: Discoverable browser extensions based on popularity

in groups of 1000, which we call “intervals”. We find 70% of the top 10, 62%
of the top 100 and 52.7% of the top 1000 extensions with a non-behavioral
technique. These extensions include popular security- and privacy-critical
extensions such as AdBlock, LastPass, Avast Online Security, Ghostery and
Disconnect. The graph also shows a descending trend, indicating that more
popular extensions have on average more web_accessible_resources.

4.2 Firefox

As mentioned in Section 3.1, manifest files for Firefox extensions can be
located in several different sub folders of an extension. The manifest files
in the sub folders are referenced from chrome.manifest in the root directory.
For this study, all manifest files were analyzed, including the manifest files
in the sub folders.

The contentaccessible flag indicates web accessible resources, but we
found that a webpage cannot perform a normal XMLHttpRequest in order to
retrieve the resource. However, it is possible to create a script tag with the
corresponding script.src attribute set to the resource in order to retrieve
it. By attaching onload and onerror event handlers to this script element,
it is possible to learn whether the resource could be retrieved. In addition,
because the absence of a resource is gracefully handled with the onerror

4 EMPIRICAL STUDY OF CHROME AND FIREFOX EXTENSIONS 157

handler, no error is reported and this method in Firefox is more discrete than
the method used with Chrome.

The amount of Firefox extensions was 17,375. However, some extensions
were duplicated in the list on Mozilla’s add-on page based on the extension
name and the extension id. The scraper found a total of 14,925 unique
extensions, but was redirected to a dead link for 29 extensions, yielding the
total number of analyzed extensions to 14,896.

Results The results of the study can be seen in Table 4.2. 7,396 did not have
a chrome.manifest file in the extension’s root directory and 6,381 extensions
did not have the flag contentaccessible in the chrome.manifest file in the
root directory. 116 out of the 1,119 extensions who had set contentaccessible
linked it to non-existing files. We also detected a total of 775 extensions who
use WebExtensions. Out of those 775 extensions, 11 also defined
chrome.manifest. 221 had web_accessible_resources set, indicating ~ 28,5%
of those extensions should be detectable. Unfortunately, WebExtensions ex-
tension ids are not stored publicly. One could, in theory, manually install all
those extensions and see if they have e.g. an options page [49], which when
browsed to would give the extension id. Due to this, we do not consider
WebExtensions detectable in this experiment.

1,003 out of 14,896 can be found with web accessible resources, which
corresponds to 6.73%. The trend for the detectable extensions can be seen in
Figure 4.3b. The interval with the most extensions that are detectable was
the top 1000 extensions with 121 detectable extensions (i.e. 12.1%). These
extensions include Firebug, Easy Screenshot and Web of Trust. However, no
ad blockers nor the popular script blocker Ghostery can be found in Firefox
without behavioral analysis. As explained in Section 3.2, Firefox extensions
have the ability to directly add to the UI using XUL, so that they do not
require web accessible resources like Chrome extensions. Therefore, Firefox
extensions need less web accessible resources.

4.3 Comparison of results

One major difference between Chrome and Firefox is how XMLHttpRequest is
handled. In Firefox, it is not allowed to access chrome: // with XMLHttpRequest,
whereas it is possible to access moz-extension:// in Firefox and

chrome-extension:// in Chrome. The use of web accessible resources, and
with that the percentage of detectable extensions, is higher for Chrome. As a
Chrome extension cannot make much modifications to the Ul of the browser
compared to Firefox, there is a greater need for using web accessible re-
sources in Chrome. Similarities could be found in the trends of accessible
resources, where both browsers had the largest interval of detectable exten-

158 DISCOVERING BROWSER EXTENSIONS VIA WEB ACCESSIBLE RESOURCES

sions in the top 1000 extensions, but Chrome had a more clear decrease over
the following intervals compared to Firefox.

5 Browser extension detection in the Alexa top 100,000

It is possible for a webpage to detect some browser extensions in a visitor’s
browser by attempting to retrieve web accessible resources. This detection
technique may be used in a malicious capacity (e.g. fingerprinting or the
reconnaissance before an attack), as well as for benign reasons (e.g. to avoid
offering the extension again, in case the visitor is already using it).

To determine whether web developers actively use this extension detec-
tion technique, we visited the top webpage on the most popular 100,000 web
domains according to Alexa, a web traffic analysis company. For each do-
main, e.g. example.com, we visited its top-most URL, i.e. http://example.com
and waited a total of one minute for the page to load and any JavaScript
to run its course. To determine whether a webpage attempts to access web
accessible resource URLs, we created a simple headless JavaScript-enabled
browser based on Qt5’s QWebView, which uses the WebKit web rendering
engine. Because our custom browser does not have any browser extensions,
and thus no web accessible resources, any request towards a URL with
unknown scheme results in an error. These errors, together with all con-
sole output generated by WebKit, were logged for every page visit for later
analysis.

To avoid an unnecessary check, a webpage can query the browser’s user-
agent before deciding to request a certain resource. Therefore, we configured
our browser to report a user-agent string associated with the most popular
web browser vendors [1]. The list of used user-agent strings was retrieved
from a list of commonly occurring user-agent strings [5]. We emulated
Google Chrome 47.0, Mozilla Firefox 40.1, Opera 12.16, Apple Safari 7.0.3,
Microsoft Internet Explorer 11, and Microsoft Edge 12.246.

Our intent is not to fake the presence of a particular browser, but instead
determine whether web developers inspect the browser’s user-agent string
before attempting to detect browser extensions.

All webpages were visited in September 2016. Of the 100,000 URLs we
visited, 91,299 webpages (91.3%) could be visited by at least one of the
user-agents.

The data shows attempts to access resource URLs with several different
schemes, but we were only interested in Google Chrome’s chrome-extension://
and Mozilla Firefox’s chrome:// and moz-extension://. We did not log any
attempts to access moz-extension://, most likely because WebExtensions is
not yet fully implemented and not many Firefox extensions use it yet.

http://example.com

5 BROWSER EXTENSION DETECTION IN THE ALEXA TOP 100,000 159

Table 4.3: Which web pages detect which Firefox extensions via simple GET
requests through HTML elements, when impersonating Chrome, Firefox,
Safari, Opera, MSIE and Edge respectively. No visited web pages attempted
to detect extensions using the XMLHttpRequest method, thus these columns
are omitted.

Rank | Domain Ext.id GET
CFSOME
10018 | amaebi.net Fext_C | vV VV V'V
13138 | forum.hr Fext D | —v —— — —
17410 | ebitsu.net Fext_C | vV VV VYV
20688 | katohika.gr Fext D | —v —— — —
22197 | 881903.com Fext_F | vV VV V'V
45043 | rincondeltibet.com Fext B | vV VV VYV
48860 | dalmacijanews.hr Fext D | —v —— — —
57858 | blogsdelagente.com Fext E | VVVV VYV
60190 | footballmanagerstory.com | Fext D | —v —— — —
64627 | arouraios.gr Fext D | —v —— — —
73723 | aekfans21l.com Fext D | —v —— — —
76496 | proekt-gaz.ru Fext A | VVVV VYV
84514 | olagossip.gr Fext D | —v —— — —
87870 | evrsac.rs FextD | —v —— - —
89329 | mikroskopio.gr Fext D | —v —— — —
92899 | burek.com Fext D | —v —— — —
96646 | freegossip.gr Fext D | —v —— — —
97133 | lifenewscy.com Fext D | —v —— — —

Table A.1 lists the domains in the Alexa top 100,000 which attempted to
access chrome-extension:// URLs, while Table 4.3 lists the same for chrome://
URLs. In both of these tables, the "Ext.id" field contains the extension id
of the accessed extension. Of the 91,299 webpages we successfully visited,
66 webpages in total attempted to access web accessible resources: 48 and
18 webpages attempted to access chrome-extension:// and chrome:// URLs
respectively. No webpage attempted to access URLs of both schemes, even
when presented with a different user-agent string.

As described in Section 3.2, extensions can be detected by accessing
web accessible resources through either XMLHttpRequest or simple GET
requests through HTML elements. Of the 48 webpages that detect Chrome

160 DISCOVERING BROWSER EXTENSIONS VIA WEB ACCESSIBLE RESOURCES

extensions, 23 use the XMLHttpRequest method and 27 use GET requests.
Only two webpages, mon. cat and rifftrax.com, use both techniques. The 18
web pages that detect Firefox extensions all use GET requests, presumably
because the web developers know about Firefox’s limitation discussed in
Section 4.2.

Of the 66 webpages that access web accessible resources, 23 (17 detecting
Chrome extensions, six for Firefox extensions) do not change their behav-
ior when presented with a different user-agent string. The majority of 43
webpages (31 Chrome, 12 Firefox) only attempt to access web accessible
resources when presented with a specific set of user-agent strings. For the 31
webpages detecting Chrome extensions based on certain user-agent strings,
15 check for a Chrome user-agent string, nine for either Chrome or Edge,
two for Opera and five for five different sets of user-agent combinations. The
12 webpages detecting Firefox extensions based for a specific user-agent, all
only target the Firefox user-agent.

Table 4.4 lists the extensions probed for during our visit of the Alexa top
100,000 for Chrome and Firefox extensions. Of the 36 Chrome extensions,
nine could not be found in the Chrome Web Store, including one (Cext_AA)
for which we could not find any information at all. None of these Chrome
extensions could be labeled as malware with any certainty. The Chrome Web
Store categorizes these 36 extensions as: eight “productivity”, eight “fun”,
six “news and weather”, five “search tools”, three “developer tools”, three
“accessibility” and two as “shopping”. There are seven different versions
of Google Cast Chrome extension appears seven time in the list, and eight
extensions named “My <something> XP” which are from the same author.

Of the six Firefox extensions in Table 4.4, only one (Fext_C) could be
found on the Mozilla Add-ons website. Of the five others, two are related to
malware. Noteworthy is Fext_F, which is a Firefox extension developed in a
Firefox extension development tutorial.

Out of the 66 webpages that access web accessible resources, most (49)
probe for the existence of a single Chrome or Firefox extension. The other
17 web pages probe for more than one extension, indicating three distinct
clusters of extensions in our dataset.

The first cluster contains extensions Cext_E, Cext_K, Cext_M, Cext_Q and
Cext_U. This cluster of five extensions is probed for on nine different domains
using only XMLHttpRequests and the extensions are different versions of
the Google Cast extension.

The second cluster contains Cext_E, Cext_K, Cext_M, Cext_Q, Cext_P and
Cext_AI This cluster is same as the previous one, but lacks Cext_U and adds
Cext_P and Cext_AI. Two webpages test for this cluster and use XMLHttpRe-
quests for the web accessible resources from the previous cluster, but GET

6 MEASURES 161

requests for the resources of the two added extensions in the list. All these
extensions are again different versions of Google Cast.

Finally, a third cluster consists of Cext_J, Cext_W and Cext_AD. This cluster
appears on five webpages using only GET requests to probe for the associ-
ated web accessible resources. These three extensions are not versions of the
same extensions like in both previous clusters. Instead, the common factor in
this case are the webpages probing for the extensions. All five webpages are
protected by an F5 BIG-IP APM, which rewrites and obfuscates JavaScript
code before transmitting it to the browser. We are uncertain whether this F5
appliance inserts the extension detection code by itself, or whether the web
pages happen to serve the same JavaScript.

The results from our experiment on the Alexa top 100,000 domains show
that chrome-extension:// and chrome:// URLs are sometimes used by web-
page developers to identify the presence of a certain extensions, although
this practice seems not widespread.

The same technique could also be used to fingerprint visitors for tracking
or deanonymization purposes, but we did not find any obvious evidence
that suggests that this is a common practice.

The presence of clusters of extension detections such as for the detection
of the Google Cast extension and all its versions (first two clusters) follows
a pattern that may indicate that web developers are sharing code for this
purpose. The reason behind the existence of the third cluster is unclear, since
it involves three very different extensions and the webpages deploying the
cluster use the same F5 appliance.

6 Measures

Section 6.1 suggests measures in favor of website developers, while Sec-
tion 6.2 suggests how extensions can prevent being found by webpages.
Finally, Section 6.3 concludes with a discussion of how to resolve security
goal clashes.

6.1 Measures for webpages: whitelisting extensions

Enabling webpages to specify a whitelist of allowed extensions, would
empower them to guarantee a clean web environment for their content. We
envision that such a measure can be implemented as a policy specified by
the webpage and enforced by the browser.

For a web application handling sensitive information, like a web banking
application, an environment known-to-be free from malware would help
secure the user’s sensitive data. Of course, such a whitelist could be used to
block any extension, such as an ad blocker, as well.

162 DISCOVERING BROWSER EXTENSIONS VIA WEB ACCESSIBLE RESOURCES

resource

remote server

resource

web page
Figure 4.4: Different measures map

browser extension

We believe it is crucial to not take away control from either party, but
rather have both parties agree on a sensible list of extensions that may be
used on the webpage. The webpage may suggest the whitelist to indicate
its intentions to secure a malware-free environment. One possibility in this
design space is to leave the final decision up to the user, endorsing and/or
overriding the whitelist, if desirable.

6.2 Measures for extensions

Extensions that are designed to enrich user experience would like to mini-
mize the risk of being found using non-behavioral analysis. The following
section will give examples of what such measures could look like. Figure 4.4
illustrates these approaches.

Prevent direct access to extension resources from webpage One natural
measure to prevent detection of an extension would be to disable direct
access from a webpage to an extension’s resource (Arrow #1 in Figure 4.4).
Instead, to retrieve an extension’s resources, a webpage would then need to
communicate with the extension via a message passing API (Arrow #3 in
Figure 4.4).

This measure would not prevent detection of an extension entirely, but
it would give the extension the opportunity to be involved in the detection
process, as desired in e.g, the Google Cast scenario.

No accessible resources = Web accessible resources can be avoided by
hosting the resources on a remote server or using data URISs (see Section 3.2).

Hosting resources on a remote server (Arrow #4 in Figure 4.4) will cause
more network traffic. However, the extra network traffic can be reduced
through the browser’s caching mechanism. This approach, be it with or
without caching, does not fully prevent the extension from being detectable
through a timing attack. A webpage trying to detect the presence of the

6 MEASURES 163

extension may request the same remote resource and measure its loading
time. If the extension is present, the loading time will be small.

In addition to detectability through a timing attack, remotely hosted re-
sources also introduce privacy concerns. Unlike for web accessible resources
hosted locally from inside an extension, requests for remotely hosted re-
sources can be monitored by an external party. These requests compromise
the privacy of the user by revealing visited URLs and possibly parts of the
user’s identity.

Using data URIs [40] would effectively remove all arrows but #2 in
Figure 4.4 and would remove extensions’ dependence on web accessible
resources. A disadvantage of this approach, is that hard-coded data URIs
can be difficult to maintain.

Track script provenance One could potentially track who injected the script
and only allow access to a given set of principals. Tracking the information
flow is, however, expensive and can make the system slower, but it would
allow for web accessible resources to be used by the content script and scripts
on the webpage that originate from the extension, but not be used by the
actual webpage itself. With such a system in place, the extension can be seen
as a closed entity from the webpage’s point of view, and therefore the web
accessible resources would not have to be publicly available.

This measure can benefit from recent work on tracking information flow
in JavaScript [32] and tracking provenance across the browser’s document
object model (DOM) [14].

When one looks at tracking script provenance, it is easy to see a scenario
where it would be up to the user to decide if a webpage should be allowed
to access the extension’s resources by prompting the user whenever a script
which was not part of the injected scripts from the extension tries to access
resources.

This measure would distinguish Arrows #1 and #2 in Figure 4.4, only
allowing injected scripts on the webpages to access the resources based on
provenance.

Extension ids An extension developer, in order to avoid detection, could
change the extension id by e.g. resubmitting the same extension to the
extension repository and getting a new id. This by itself would be of limited
effect as then the extension with updated id needs to rebuild its userbase.
An extension has other means to retrieve its own resources (Arrow #2 in
Figure 4.4) than via web-accessible resources. The only reason to have web
accessible resources is for a webpage to load its resource. But the location of
this resource does not need to be fixed. Instead of having a fixed extension id
which can be used to detect the presence of an extension, the extension could

164 DISCOVERING BROWSER EXTENSIONS VIA WEB ACCESSIBLE RESOURCES

generate a random token and pass it along to the webpage. A webpage which
possesses this token, can use it to gain access to the extension’s resources.

Whitelisting webpages Instead of being active on all webpages a browser
visits, extensions could be activated on a case-by-case basis. For instance,
there is probably no need to enable the Google Cast extension on a banking
website. If an extension is not active on a webpage, and its resources not
available to this webpage, then it can not be detected through the presence
of web accessible resources. A measure such as this one can be implemented
through a user-modifiable whitelist in the browser.

6.3 User to resolve conflicting security goals

Because the conflicting security goals are legitimate, it is important to strike
a reasonable balance between the interests of the different parties by com-
bining webpage measures with extension measures. For example, allow-
ing webpages to whitelist extensions which can be active in their domain,
whereas allowing extensions to whitelist webpages which are allowed to
communicate with the extensions would help both webpages and extensions
reach their goals.

But who should be the one to resolve the conflicting security goals?
As mentioned in Section 6.1, allowing a webpage to provide a whitelist
over extensions allowed to execute in their domain can lead to webpages
not allowing any extension. This can lead to users losing their ability to
customize their user experience when browsing the web.

We resort to the “users > developers > browser” principle, as common
in the web community folklore. This principle gives users precedence over
developers and browsers in the web setting. Driven by this principle, we
designate the user as an arbiter to endorse and/or overwrite whitelists
provided by webpages and extensions, respectively.

We currently experiment with a prototype, based on Chromium, to sup-
port fine-grained whitelisting policies that give the user the power to tem-
porarily enable and disable extensions depending on what webpages are
being visited.

7 Related work

Non-behavioral extension detection has so far received only scarce attention,
primarily in the form of scattered blog posts [8, 4, 3, 6, 2, 7], some referring to
outdated browser features and some only traceable in Internet archives [8, 4].

7 RELATED WORK 165

To the best of our knowledge, we are the first to systematically study
non-behavioral extension discovery at large in both Chrome and Firefox’s
extension web stores, as well as the Alexa top 100,000 webpages.

There is a large body of work on detection of maliciously behaving
browser extensions. The state of the art is well summarized by Jagpal et
al. [35]. The rest of this section focuses on detecting extensions and finger-
printing browsers.

7.1 Detecting extensions

Prior work in detecting extensions has focused on behavioral techniques. For
instance, Nikiforakis et al. [57] analyze eleven popular browser extensions
that hide the real user agent string from visited websites in order to obfuscate
a browser’s fingerprint, but observe that the these extensions neglect to
remove the same information from the JavaScript environment, making the
extension detectable by a visited website through its behavior. This detection
mechanism is fragile since, as explained in Section 2, extensions may modify
their behavior in order to avoid detection, forcing websites to alter their
detection method, triggering an arms race. Using another approach, Thomas
et al. [61] detect the in-flight alteration of a webpage, by comparing the DOM
of the rendered webpage against the expected DOM. This catch-all method
detects all DOM modifying extensions as well as proxies and compromised
browsers. Such an approach is more robust, since it will detect all extensions
that modify the DOM even when they attempt to evade detection. However,
since it does not focus on an extension’s specific behavior, it is less precise.
Non-behavioral extension detection on the other hand, like the technique
presented in this paper, uses simple and cheap checks to determine the
presence of a specific extension, without false positives. In addition, an
extension can not evade detection by altering its behavior. Instead, the only
way for an extension to avoid detection is by removing its web accessible
resources, which is not always practical as explained in Section 6.2.

Non-behavioral extension discovery via web accessible resources has
only received scarce attention in the form of scattered observations, primarily
in blog posts [8, 4, 3, 6, 2, 7], some referring to outdated browser features
and some only traceable in Internet archives [8, 4].

We go beyond these observations by systematically studying the entire
class of extension discovery via web accessible resources, performing an
empirical study with discoverability of all free extensions of the two major
browsers, preforming a large scale study of discovery by the top 100,000
Alexa webpages, and proposing measures.

166 DISCOVERING BROWSER EXTENSIONS VIA WEB ACCESSIBLE RESOURCES

7.2 Fingerprinting browsers

There has been much work on browser fingerprinting. INRIA’s Browser
Extension Experiment [34] is based on our technique and code to enhance
browser fingerprinting by detecting extensions. We overview the work on
fingerprinting below, noting that the rest of the approaches are less related
because they do not address extension detection.

Panopticlick [59] uses such browsers properties as screen resolution, user
agent string, timezone, system fonts, and browser plugins to uniquely iden-
tify browsers. Browsers can also be fingerprinted through browser quirks [9],
canvas fingerprinting [43, 10], dimensions of rendered font glyphs [19],
browser histories [58], ECMAScript compliance [55], performance of the
JavaScript engine and whitelisted domains in the NoScript extension [42],
and more [57, 63].

Nikiforakis et al. [57] detect font probing and flash-based proxy evasion
as fingerprinting mechanisms provided by three commercial fingerprinting
companies, and find 40 websites in the Alexa top 10,000 make use of them.
Acar et al. build FPDetective [11] and find 404 websites in the Alexa top
million that use JavaScript-based font probing, as well as 145 websites in the
Alexa top 10,000 that use Flash-based font probing to fingerprint visitors.
Acar et al. [10] study the Alexa top 100,000 and find that canvas fingerprint-
ing is the most commonly used fingerprinting technique, with 5% of the
studied websites using it.

Defending against fingerprinting is difficult, if even possible. There ap-
pears to be no one-size-fits-all solution. Several strategies have been sug-
gested. One crude way to address the problem is by simply blocking certain
forms of third-party content, such as JavaScript or Flash known to contain
fingerprinting code [10, 17, 57, 58, 63]. Similarly crude would be to disable
certain functionality in the browser, such as the ability to query pixel-values
from a canvas [43].

Instead of blocking third-party content or functionality, a browser could
ask for user permission whenever a fingerprintable characteristic of the
browser is queried, e.g. reading those pixel-values from a canvas [10, 43, 63].

Yet another approach adds (smart) noise to fingerprintable browser char-
acteristics, thereby randomizing the fingerprint [10, 43, 17, 19, 20, 36, 56, 62,
63]. The reverse approach is to decrease the randomness of the reported
browser characteristics by standardizing the set of possible values for fin-
gerprintable resources, such as the list of system fonts, so that all browsers
report the same values [19, 43, 57, 63].

Conceding that fingerprinting cannot be stopped, recent work has inves-
tigated preventing the exfiltration of the fingerprint itself by monitoring net-

8 CONCLUSION 167

work traffic [62, 19, 55], or even by rewriting a detected fingerprint through
a network proxy [65].

8 Conclusion

To the best of our knowledge, we have presented the first comprehensive
study of non-behavioral browser extension discovery. We have systemati-
cally studied the technique and its applicability at large scale. At the core
of our technique is detection of web accessible resources that are associated
with extensions via unique extension ids. This yields an effective detec-
tion technique with no false positives, which we have instantiated for both
Chrome and Firefox. We report on an empirical study with free Chrome and
Firefox extensions, detecting over 50% of the top 1,000 free Chrome exten-
sions (including such sensitive extensions as AdBlock and LastPass) and
over 28% of the Chrome extensions in the study overall. We have conducted
an empirical study of non-behavioral extension detection on the Alexa top
100,000 websites. This study confirms that detecting extensions via web ac-
cessible resources is not widely known. Nevertheless, we identify websites
that perform extension detection for types of extensions that include fun,
productivity, news, weather, search tools, developer tools, accessibility, and
shopping. We have presented measures for and against browser extension
discovery, catering to the needs of website owners and extension developers,
respectively. Finally, we have discussed a browser architecture that allows a
user to take control in arbitrating the conflicting security goals.

Our code for discovering browser extensions is already used by INRIA’s
Browser Extension Experiment [34].

Future work focuses on the measures outlined in Section 6. In particular,
our short-term goal is to study whether disallowing GET requests from web-
pages to extension schemas (Firefox disallows XMLHttpRequest apart from
for WebExtensions, but not GET from HTML elements such as script and
img, whereas Chrome allows all three) will result in breaking functionality
of common extensions. Such a study may provide useful input for the future
handling of extensions in Chrome and Firefox. As mentioned earlier, we
are also experimenting with a prototype based on Chromium to support
fine-grained whitelisting policies that give the user the power to temporar-
ily enable and disable extensions depending on what webpages are being
visited.

Acknowledgments Thanks are due to Ioannis Papagiannis for the inspi-
rations and helpful feedback. This work was partly funded by Andrei
Sabelfeld’s Google Faculty Research Award, Facebook Research and Aca-
demic Relations Program Gift, the European Community under the ProSe-
cuToR project, and the Swedish research agency VR.

168

[10]

(1]

[12]

[13]
[14]

[15]

[16]

[17]

DISCOVERING BROWSER EXTENSIONS VIA WEB ACCESSIBLE RESOURCES

Bibliography

Desktop Browser Market Share. https://www.netmarketshare.com/browser-
market-share.aspx.

Detecting Chrome Extensions in 2013. http://gcattani.github.io/201303/
detecting- chrome-extensions-in-2013/.

Detecting Firefox Extensions Without Javascript. http://kuza55.blogspot.co.uk/
2007/10/detecting- firefox-extension-without.html.

Detecting FireFox Extentions. http://ha.ckers.org/blog/20060823/detecting-
firefox-extentions/.

List of User Agent Strings. http://www.useragentstring.com/pages/
useragentstring.php.

Sparse Bruteforce Addon Detection. http://www.skeletonscribe.net/2011/07/
sparse-bruteforce-addon-scanner.html.

The Evolution of Chrome Extensions Detection. http://blog.beefproject.com/
2013/04/the-evolution-of-chrome-extensions.html.

Yet Another Way to Detect Internet Explorer. http://ha.ckers.org/blog/
20060821/yet-another-way-to-detect-internet-explorer/.

E. Abgrall, Y. Traon, M. Monperrus, S. Gombault, M. Heiderich, and A. Ribault.
XSS-FP: Browser fingerprinting using HTML parser quirks. Technical report,
2012. arXiv:1211.4812 [cs].

G. Acar, C. Eubank, S. Englehardt, M. Juarez, A. Narayanan, and C. Diaz. The
web never forgets: Persistent tracking mechanisms in the wild. In CCS, 2014.

G. Acar, M. Juarez, N. Nikiforakis, C. Diaz, S. Giirses, E. Piessens, and B. Preneel.
FPDetective: Dusting the web for fingerprinters. In CCS, 2013.

AdBlock. https://chrome.google.com/webstore/detail/adblock/
gighmmpiobklfepjocnamgkkbiglidom.

V. Allaire. FuckAdBlock. https://github.com/sitexw/FuckAdBlock.

L. Bauer, S. Cai, L. Jia, T. Passaro, M. Stroucken, and Y. Tian. Run-time monitor-
ing and formal analysis of information flows in chromium. In NDSS, 2015.

Q. Cao, X. Yang, J. Yu, and C. Palow. Uncovering large groups of active malicious
accounts in online social networks. In CCS, 2014.

clsr. FuckFuckFuckAdBlock. https://gist.github.com/clsr/
3f5ca796463a0e6fc8af.

A. FaizKhademi, M. Zulkernine, and K. Weldemariam. FPGuard: Detection
and prevention of browser fingerprinting. In Data and Applications Security and
Privacy, 2015.

https://www.netmarketshare.com/browser-market-share.aspx
https://www.netmarketshare.com/browser-market-share.aspx
http://gcattani.github.io/201303/detecting-chrome-extensions-in-2013/
http://gcattani.github.io/201303/detecting-chrome-extensions-in-2013/
http://kuza55.blogspot.co.uk/2007/10/detecting-firefox-extension-without.html
http://kuza55.blogspot.co.uk/2007/10/detecting-firefox-extension-without.html
http://ha.ckers.org/blog/20060823/detecting-firefox-extentions/
http://ha.ckers.org/blog/20060823/detecting-firefox-extentions/
http://www.useragentstring.com/pages/useragentstring.php
http://www.useragentstring.com/pages/useragentstring.php
http://www.skeletonscribe.net/2011/07/sparse-bruteforce-addon-scanner.html
http://www.skeletonscribe.net/2011/07/sparse-bruteforce-addon-scanner.html
http://blog.beefproject.com/2013/04/the-evolution-of-chrome-extensions.html
http://blog.beefproject.com/2013/04/the-evolution-of-chrome-extensions.html
http://ha.ckers.org/blog/20060821/yet-another-way-to-detect-internet-explorer/
http://ha.ckers.org/blog/20060821/yet-another-way-to-detect-internet-explorer/
https://chrome.google.com/webstore/detail/adblock/gighmmpiobklfepjocnamgkkbiglidom
https://chrome.google.com/webstore/detail/adblock/gighmmpiobklfepjocnamgkkbiglidom
https://github.com/sitexw/FuckAdBlock
https://gist.github.com/clsr/3f5ca796463a0e6fc8af
https://gist.github.com/clsr/3f5ca796463a0e6fc8af

9 BIBLIOGRAPHY 169

(18]
[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]
[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

http://newsroom.fb.com/company-info/#statistics.

D. Fifield and S. Egelman. Fingerprinting web users through font metrics. In
Financial Cryptography and Data Security, 2015.

U. Fiore, A. Castiglione, A. De Santis, and F. Palmieri. Countering browser
fingerprinting techniques: Constructing a fake profile with google chrome. In
NBiS, 2014.

Google. Chrome web store. https://chrome.google.com/webstore/category/
extensions?hl=en-GB& feature=free.

Google. chrome.browserAction. https://developer.chrome.com/extensions/
browserAction.

Google. chrome.pageAction. https://developer.chrome.com/extensions/
pageAction.
Google. Content Scripts. https://developer.chrome.com/extensions/

content_scripts.

Google. Manifest - Web Accessible Resources. https://developer.chrome.com/
extensions/manifest/web_accessible_resources.

Google. Manifest File Format. https://developer.chrome.com/extensions/
manifest.

Google. Message Passing. https://developer.chrome.com/extensions/
messaging.

Google. Overview. https://developer.chrome.com/extensions/overview.

Google Cast. https://chrome.google.com/webstore/detail/google- cast/
boadgeojelhgndaghljhdicfkmllpafd.

P. Giihring. Concepts against man-in-the-browser attacks. http://
www.cacert.at/svn/sourcerer/CAcert/SecureClient.pdf, 2006.

D. Hausknecht,]J. Magazinius, and A. Sabelfeld. May I? - Content Security
Policy Endorsement for Browser Extensions. In DIMVA, 2015.

D. Hedin, A. Birgisson, L. Bello, and A. Sabelfeld. JSFlow: Tracking Information
Flow in JavaScript and its APIs. In SAC, 2014.

How to detect Adblock on my website? http://stackoverflow.com/questions/
4869154/how-to-detect-adblock-on-my-website.

INRIA. Browser Extension Experiment. https://extensions.inrialpes.fr.

N. Jagpal, E. Dingle, J. Gravel, P. Mavrommatis, N. Provos, M. A. Rajab, and
K. Thomas. Trends and lessons from three years fighting malicious extensions.
In USENIX Sec., 2015.

P. Laperdrix, W. Rudametkin, and B. Baudry. Mitigating browser fingerprint
tracking: Multi-level reconfiguration and diversification. In SEAMS, 2015.

http://newsroom.fb.com/company-info/#statistics
https://chrome.google.com/webstore/category/extensions?hl=en-GB&_feature=free
https://chrome.google.com/webstore/category/extensions?hl=en-GB&_feature=free
https://developer.chrome.com/extensions/browserAction
https://developer.chrome.com/extensions/browserAction
https://developer.chrome.com/extensions/pageAction
https://developer.chrome.com/extensions/pageAction
https://developer.chrome.com/extensions/content_scripts
https://developer.chrome.com/extensions/content_scripts
https://developer.chrome.com/extensions/manifest/web_accessible_resources
https://developer.chrome.com/extensions/manifest/web_accessible_resources
https://developer.chrome.com/extensions/manifest
https://developer.chrome.com/extensions/manifest
https://developer.chrome.com/extensions/messaging
https://developer.chrome.com/extensions/messaging
https://developer.chrome.com/extensions/overview
https://chrome.google.com/webstore/detail/google-cast/boadgeojelhgndaghljhdicfkmllpafd
https://chrome.google.com/webstore/detail/google-cast/boadgeojelhgndaghljhdicfkmllpafd
http://www.cacert.at/svn/sourcerer/CAcert/SecureClient.pdf
http://www.cacert.at/svn/sourcerer/CAcert/SecureClient.pdf
http://stackoverflow.com/questions/4869154/how-to-detect-adblock-on-my-website
http://stackoverflow.com/questions/4869154/how-to-detect-adblock-on-my-website
https://extensions.inrialpes.fr

170

(371

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

DISCOVERING BROWSER EXTENSIONS VIA WEB ACCESSIBLE RESOURCES

I read that LastPass is vulnerable to phishing attacks - should I be concerned?
https://lastpass.com/support.php?cmd=showfaq&id=10072.

LastPass. https://lastpass.com/.
LostPass. https://www.seancassidy.me/lostpass.html.
L. Masinter. The "data" URL scheme. http://tools.ietf.org/html/rfc2397.

Mechazawa. FuckFuckAdBlock. https://github.com/Mechazawa/
FuckFuckAdblock.

K. Mowery, D. Bogenreif, S. Yilek, and H. Shacham. Fingerprinting information
in JavaScript implementations. In W2SP, 2011.

K. Mowery and H. Shacham. Pixel perfect: Fingerprinting canvas in HTMLS5.
In W2SP, 2012.

Mozilla. Chrome registration. https://developer.mozilla.org/en-US/docs/
Chrome_Registration.

Mozilla. Communicating using "port". https://developer.mozilla.org/en-US/
Add-ons/SDK/Guides/Content_Scripts/using_port.

Mozilla. Communicating using "postmessage”. https://developer.mozilla.org/
en-US/Add-ons/SDK/Guides/Content_Scripts/using_postMessage.

Mozilla. Manifest Files. https://developer.mozilla.org/en-US/docs/Mozilla/
Tech/XUL/Tutorial/Manifest_Files.

Mozilla. Most Popular Extensions. https://addons.mozilla.org/en-US/firefox/
extensions/?sort=users.
Mozilla. options_ui. https://developer.mozilla.org/en-US/Add-ons/

WebExtensions/manifest.json/options_ui.

Mozilla. Porting a Google Chrome extension. https://developer.mozilla.org/
en-US/Add-ons/WebExtensions/Porting_a_Google_Chrome_extension.

Mozilla. web_accessible_resources. https://developer.mozilla.org/en-US/Add-
ons/WebExtensions/manifest.json/web_accessible_resources.

Mozilla. WebExtensions. https://developer.mozilla.org/en-US/Add-ons/
WebExtensions.

Mozilla. WebExtensions - Permission Model. https://wiki.mozilla.org/
WebExtensions#Permission_Model.

Mozilla. XUL Overlays. https://developer.mozilla.org/en-US/docs/Mozilla/
Tech/XUL/Overlays.

M. Mulazzani, P. Reschl, M. Huber, M. Leithner, S. Schrittwieser, E. Weippl,
and F. Wien. Fast and reliable browser identification with JavaScript engine
fingerprinting. In W2SP, 2013.

https://lastpass.com/support.php?cmd=showfaq&id=10072
https://lastpass.com/
https://www.seancassidy.me/lostpass.html
http://tools.ietf.org/html/rfc2397
https://github.com/Mechazawa/FuckFuckAdblock
https://github.com/Mechazawa/FuckFuckAdblock
https://developer.mozilla.org/en-US/docs/Chrome_Registration
https://developer.mozilla.org/en-US/docs/Chrome_Registration
https://developer.mozilla.org/en-US/Add-ons/SDK/Guides/Content_Scripts/using_port
https://developer.mozilla.org/en-US/Add-ons/SDK/Guides/Content_Scripts/using_port
https://developer.mozilla.org/en-US/Add-ons/SDK/Guides/Content_Scripts/using_postMessage
https://developer.mozilla.org/en-US/Add-ons/SDK/Guides/Content_Scripts/using_postMessage
https://developer.mozilla.org/en-US/docs/Mozilla/Tech/XUL/Tutorial/Manifest_Files
https://developer.mozilla.org/en-US/docs/Mozilla/Tech/XUL/Tutorial/Manifest_Files
https://addons.mozilla.org/en-US/firefox/extensions/?sort=users
https://addons.mozilla.org/en-US/firefox/extensions/?sort=users
https://developer.mozilla.org/en-US/Add-ons/WebExtensions/manifest.json/options_ui
https://developer.mozilla.org/en-US/Add-ons/WebExtensions/manifest.json/options_ui
https://developer.mozilla.org/en-US/Add-ons/WebExtensions/Porting_a_Google_Chrome_extension
https://developer.mozilla.org/en-US/Add-ons/WebExtensions/Porting_a_Google_Chrome_extension
https://developer.mozilla.org/en-US/Add-ons/WebExtensions/manifest.json/web_accessible_resources
https://developer.mozilla.org/en-US/Add-ons/WebExtensions/manifest.json/web_accessible_resources
https://developer.mozilla.org/en-US/Add-ons/WebExtensions
https://developer.mozilla.org/en-US/Add-ons/WebExtensions
https://wiki.mozilla.org/WebExtensions#Permission_Model
https://wiki.mozilla.org/WebExtensions#Permission_Model
https://developer.mozilla.org/en-US/docs/Mozilla/Tech/XUL/Overlays
https://developer.mozilla.org/en-US/docs/Mozilla/Tech/XUL/Overlays

9 BIBLIOGRAPHY 171

[56] N. Nikiforakis, W. Joosen, and B. Livshits. PriVaricator: Deceiving fingerprinters
with little white lies. In WWW, 2015.

[57] N. Nikiforakis, A. Kapravelos, W. Joosen, C. Kruegel, F. Piessens, and G. Vigna.
Cookieless monster: Exploring the ecosystem of web-based device fingerprint-
ing. In S&P, 2013.

[58] L. Olejnik, C. Castelluccia, and A. Janc. Why johnny can’t browse in peace: On
the uniqueness of web browsing history patterns. In HotPETs, 2012.

[59] Panopticlick. https://panopticlick.eff.org/.

[60] A.Sjosten, S. Van Acker, and A. Sabelfeld. Discovering Browser Extensions via
Web Accessible Resources. Full version and code. http://www.cse.chalmers.se/
research/group/security/extensions.

[61] K. Thomas, E. Bursztein, C. Grier, G. Ho, N. Jagpal, A. Kapravelos, D. McCoy,
A. Nappa, V. Paxson, P. Pearce, N. Provos, and M. A. Rajab. Ad injection at
scale: Assessing deceptive advertisement modifications. In S&P, 2015.

[62] C.F Torres, H. Jonker, and S. Mauw. FP-block: Usable web privacy by control-
ling browser fingerprinting. In ESORICS, 2015.

[63] R. Upathilake, Y. Li, and A. Matrawy. A classification of web browser finger-
printing techniques. In NTMS, 2015.

[64] W3C. Csp2. https://www.w3.0rg/TR/CSP2/.

[65] S. Yokoyama and R. Uda. A proposal of preventive measure of pursuit using a
browser fingerprint. In IMCOM, 2015.

https://panopticlick.eff.org/
http://www.cse.chalmers.se/research/group/security/extensions
http://www.cse.chalmers.se/research/group/security/extensions
https://www.w3.org/TR/CSP2/

172 DISCOVERING BROWSER EXTENSIONS VIA WEB ACCESSIBLE RESOURCES

Table 4.4: Chrome (Cext_x) and Firefox (Fext_x) extensions requested from
Alexa top 100,000 sites

[
Sl
5| &
R
2 <
Ext.id | Extension name S | & | E | Extension type
Cext_A | Turn Off the Lights 1 | v | — | accessibility
Cext_B | Gismeteo 1 | v | — | news and weather
Cext_C | My Speed Test XP 1 | v | — | productivity
Cext_D | GF Tools 1 | v | — | accessibility
Cext_E | Google cast 11| v | — | fun
Cext_F | Adblock plus 1 | v | — | productivity
Cext_G | My classifieds XP 1|V search tools
Cext_H | My maps XP 1|V search tools
Cext_I | Screen Capture 3 | — | ? | developer tools
Cext_] | User-Agent Switcher 5 | v | = | productivity
Cext_K | Google Cast Beta 11| - | — | fun
Cext_L | offnews.bg 1 | v | — | news and weather
Cext_M | Google Cast (old) 11| - | — | fun
Cext_N | My email XP 1 | v | — | search tools
Cext_0 | My weather XP 1 | v | — | news and weather
Cext_P | Google Cast (old) 2 | = | - | fun
Cext_Q | Google Cast (old) 11| - | — | fun
Cext_R | Google Docs Offline 3 | v | = | productivity
Cext_S | Adblock 2 | v | — | productivity
Cext_T | My TV XP 1 | v | — | search tools
Cext_U | Google Cast (old) 9 | — | — | fun
Cext_V | My current news XP 1 | v | — | news and weather
Cext_W | Table capture 5 | v | = | developer tools
Cext_X | NetBarg 1 | v | — | shopping
Cext_Y | Galera Video News 1 | v | — | accessibility
Cext_Z | RT News 1 | v | — | news and weather
Cext_AA | ??? 1| -] 72?2
Cext_AB | Enable Copy 1 | v | — | productivity
Cext_AC | Letyshops Cashback 1 | v | — | shopping
Cext_AD | Scraper 5 | v | — | developer tools
Cext_AE | Ghostery 2 | v | — | productivity
Cext_AF | Iomods 1 |- -] fun
Cext_AG | My directions XP 1 | v | — | search tools
Cext_AH | Hosocru mas CMIN2 1 | v | — | news and weather
Cext_AI | Google Cast (old) 2 | — | - | fun
Cext_A) | Streak GRM for Gmail 2 | v | — | productivity
Fext_A | “depositfiles” 1|1 -7
Fext_B | PiccShare 1 | - | v | adware
Fext_C | S3 Google Translator 2 | V| -
Fext_D | “searchincognito” 12 | - | v | adware
Fext_E | Skype Extension 1 -
Fext_F | Firefox Toolbar Tutorial | 1 | — | — | tutorial

9 BIBLIOGRAPHY 173

Table A.1: Which web pages detect which Chrome extensions, via either
XMLHttpRequest or simple GET requests through HTML elements, when
impersonating Chrome, Firefox, Safari, Opera, MSIE and Edge respectively.

Rank | Domain Ext.id XHR GET
CFSOME | CFSOME
127 | twitch.tv Cext_E, Cext_K, Cext_M, Cext_Q, Cext_ U | vV VVVV | ——————
417 | newegg.com CexttAE | —m—— VIV
564 | gismeteo.ru CextB | ——=—— V=V
1678 | smi2.ru Cext_AH VS R
2012 | popmyads.com CextAE] =—===== Ve ——
2423 | shadbase.com Cext_E, Cext_K, Cext_M, Cext_Q, Cext U | vV VVVV | —————~—
2486 | what-character-are-you.com | Cext.s | —————— VIV
4726 | gdeposylka.ru CexttAC | === ———__
6486 | stc.com.sa CextA | —=m=—— VIV
10226 | netbarg.com CextX | ——me V|-
11157 | offnews.bg CextL | —===== ==V
14921 | moi.gov.qa Cext_J, Cext_W,Cext.AD | —=———— VY
15862 | gameblog.fr Cext_E, Cext_K, Cext_M, Cext_Q, Cext_ U | vV VV -V | ——————
21917 | myemailxp.com Cext_N [V R
23008 | takenokosokuhou.com CextI === [
25410 | loginfaster.com Cext_AA [V [
25647 | gorod.dp.ua Cext_F,Cext.S | —————— V-
25787 | mailfoogae.appspot.com CextAJ | —————— VA ——
26908 | mon.cat Cext_E, Cext_K, Cext_M, Cext_Q VIV | ——== ==
Cext_P,Cext.t AT | —==———~— VY
29906 | landandfarm.com Cext_E, Cext_K, Cext_M, Cext_Q, Cext_U VAR
33100 | dailynews.lk Cext_Z V2= [——
36050 | amtrakguestrewards.com Cext_J, Cext_W, Cext_ AD | —————~— VI
42726 | wotlabs.net Cext_E, Cext_K, Cext_M, Cext_Q, Cext_ U | vV -V -V | ————— -
. Cext_E, Cext_K, Cext_M, Cext_Q IIIII T | === C
43800 | rifftrax.com 7 T A — Rppp—— TITTTT
44979 | teutorrent.com Cextd | ————— VI =Y
45000 | dohabank.com.qa Cext_J, Cext_W,Cext_. AD | ———=—=—~— VIV
45463 | gameworld.gr Cext_E, Cext_K, Cext_M, Cext_Q, Cext_ U | vV VVVV | ——==——
45922 | myspeedtestxp.com Cext_C [/ [
48905 | mymapsxp.com Cext_H [V |
49383 | mydrivingdirectionsxp.com | Cext_AG [V |,
50866 | samagra.gov.in CextR | ———m— - VA —_—
51177 | mytelevisionxp.com Cext.T [/
51651 | agariomods.com CexttAF | o V——
52003 | cal-online.co.il Cext_J, Cext_W,Cext_.AD | —————~— VY
53310 | magine.com Cext_E, Cext_K, Cext_M, Cext_Q, Cext_U V=V | ===
56422 | globalgamejam.org Cext_E, Cext_K, Cext_M, Cext_Q, Cext_U VIV | ——== ==
56759 | connectdirectlink.com CextI | ——m— == —— -y - =
62515 | sorteiefb.com.br CextI | —===== VAV
65826 | emsisoft.com CextR | —eee == -———_
67549 | deepdiscount.com Cext_J, Cext_W,Cext_.AD | —=——= == VY
72167 | streak.com CextAJ | === V==V
73173 | galerafilmes.com CextY | ——mm— VY
77437 | mycurrentnewsxp.com Cext_V [V [————
78429 | chuckhawks.com Cext_E, Cext_K, Cext_M, Cext_Q, Cext_U [V NS
81724 | zjw.cn CextAB | —————— VIV
91408 | myweatherxp.com Cext_0 [V R
92146 | myclassifiedsxp.com Cext_G [V R

93774 | freehomeschooldeals.com CextR | ———— VS

174 DISCOVERING BROWSER EXTENSIONS VIA WEB ACCESSIBLE RESOURCES

Paper V

Latex Gloves:
Protecting Browser Extensions from
Probing and Revelation Attacks

Alexander Sjosten, Steven Van Acker, Pablo Picazo-Sanchez, Andrei
Sabelfeld

Network and Distributed System Security Symposium (NDSS), San Diego, CA,
USA, February 2019

175

1 INTRODUCTION 177

Abstract

Browser extensions enable rich experience for the users of today’s
web. Being deployed with elevated privileges, extensions are given the
power to overrule web pages. As a result, web pages often seek to de-
tect the installed extensions, sometimes for benign adoption of their
behavior but sometimes as part of privacy-violating user fingerprinting.
Researchers have studied a class of attacks that allow detecting exten-
sions by probing for Web Accessible Resources (WARs) via URLs that
include public extension IDs. Realizing privacy risks associated with
WARSs, Firefox has recently moved to randomize a browser extension’s
ID, prompting the Chrome team to plan for following the same path.
However, rather than mitigating the issue, the randomized IDs can in
fact exacerbate the extension detection problem, enabling attackers to
use a randomized ID as a reliable fingerprint of a user. We study a class
of extension revelation attacks, where extensions reveal themselves by
injecting their code on web pages. We demonstrate how a combination
of revelation and probing can uniquely identify 90% out of all exten-
sions injecting content, in spite of a randomization scheme. We perform
a series of large-scale studies to estimate possible implications of both
classes of attacks. As a countermeasure, we propose a browser-based
mechanism that enables control over which extensions are loaded on
which web pages and present a proof of concept implementation which
blocks both classes of attacks.

1 Introduction

Browser extensions, or simply extensions, enable rich experience for the
users of today’s web. Since the introduction of browser extensions in Mi-
crosoft Internet Explorer 5 in 1999 [42], they have been an important tool to
customize the browsing experience for all major browser vendors. Today,
the most popular extensions have millions of users, e.g. AdBlock [10] has
over 10,000,000 downloads in the Chrome Web Store [24]. All major web
browsers now support browser extensions. Mozilla and Chrome provide
popular platforms for browser extensions, with Mozilla having over 11.78%,
and Chrome over 66.1% of the browser’s market share (April 2018) [57].

Power of extensions Firefox and Chrome provide their extensions with
elevated privileges [41]. As such, the extensions have access to a vast amount
of information, such as reading and modifying the network traffic, the ability
to make arbitrary modifications to the DOM, or having the possibility to
access a user’s private information from the browsing history or the cookies.
The extension models for both Firefox and Chrome allow extensions to read

LATEX GLOVES: PROTECTING BROWSER EXTENSIONS FROM
178 PROBING AND REVELATION ATTACKS

and modify the DOM of the currently loaded web page [44, 26]. In addition
to the aforementioned scenarios, some browser extensions like password
managers, have access to sensitive data such as the user’s passwords, which
can include credentials to email accounts or social networks.

Detecting extensions Due to the increased power that browser extensions
possess, they have been target for detection from web pages. Today, Chrome
comes with a built-in ChromeCast extension [31], which has Web Accessible
Resources (WARs), public files which exist in the extension and can be acces-
sible from the context of the web page. Web pages, such as video streaming
pages, can then probe for the ChromeCast extension, and add a cast button
which would allow to cast the video player to the connected ChromeCast.
By doing this, the browsing experience of the user is improved. On the other
side, a web page might want to prevent DOM modifications (e.g. by detect-
ing ad blockers), prepare for an attack against the user of a browser extension
with sensitive information (e.g. by performing a phishing attack [16]), or
even to gain access to the elevated APIs the browser extension has access
to [3]. With the possibility of detecting browser extensions by web pages,
users can be tracked based on their installed browser extensions [22, 55, 53].
This motivates the focus of this paper on the problem of protecting browser
extensions from detection attacks.

Probing attack Previous works [55, 53] have focused on non-behavioral
detection, based on a browser extension’s listed WARs. The WARs are public
resources which can be fetched from the context of a web page using a
predefined URL, consisting of a public extension ID (or Universally Unigue
Identifier (UUID)) and the path to that resource. With the predefined URL
to fetch a WAR from an extension, a web page can mount a probing attack,
designed to detect an extension by probing for WARSs, since a response with
the probed WAR indicates the corresponding extension is installed. This
attack can be seen in Figure 5.1a where (D) denotes the requests made by the
attacker to probe for an installed browser extension. If the browser extension
is in the browser context, the attacker will get a response consisting of the
requested WAR (denoted by (2)). This attack can be magnified by probing for
a set of browser extensions’ resources, thereby enumerating many or even
all installed browser extensions.

Firefox defense against probing As the probing attack is possible when
the URLs of a browser extension’s WARs are fixed and known beforehand,
Firefox implements a randomization scheme for the WAR URLs in their
new browser extension model, WebExtensions. To make the probing attack

1 INTRODUCTION 179

i———— @ extensionid ‘extensionid
(@ WAR , S | WAR
(a) Probing attack. (b) Revelation attack.

Figure 5.1: Schematic overview of the extension probing attack and extension
revelation attacks. In the probing attack, a web page probes for the presence
of an extension. In the revelation attack, the extension reveals itself to the
attacker by injecting content in the web page.

infeasible, each browser extension is given a random UUID, as it “prevents
websites from fingerprinting a browser by examining the extensions it has in-
stalled” [50]. The Chrome developers are considering to implement a similar
randomization scheme, when they have “the opportunity to make a breaking
change” [8].

Revelation attack Starov and Nikiforakis [56] show that browser exten-
sions can introduce unique DOM modifications, which allows an attacker
to determine which extension is active based on the DOM modification.
In contrast to probing attacks, these attacks are behavioral attacks because
they are based on detecting behavior of a browser extension via, e.g., DOM
modifications.

This work puts the spotlight on revelation attacks, an important subclass
of behavioral attacks, first introduced by Sdanchez-Rola et al. in the context of
Safari extensions [53]. The core of a revelation attack is to trick an extension
to inject content via WAR URLs, thereby giving up its random UUID and
provide a unique identifier of the victim. This attack is displayed in Fig-
ure 5.1b. When the WAR is injected by the browser extension (D), the URL
with the random UUID becomes known to the attacker, who is monitoring
changes to the web page through JavaScript. With the random UUID known,
an attacker can construct WAR URLs to known resources by initiating a
probing attack (@ and (3). The probing in this case will be done for known
unique resources for browser extensions which have the injected WAR as
a resource, a set which can be precomputed by the attacker. Upon finding
one of the resources in this precomputed set, the attacker can deduce which
browser extension injected the information, allowing derandomization of
browser extensions.

Starov and Nikiforakis [56] show that browser extensions can provide
unique DOM modifications, allowing an attacker to determine the active

LATEX GLOVES: PROTECTING BROWSER EXTENSIONS FROM
180 PROBING AND REVELATION ATTACKS

extension. However, it is not possible to uniquely identify the victim only
based on the browser extensions [33]. This is the crucial part of the revelation
attack: as the random UUID becomes known to the attacker, it enables them
to uniquely identify the victim, based on that installed extension alone.
Furthermore, in most cases these random WAR URLs can easily be used
to derandomize an extension, indicating the UUID randomization does
not prevent extension fingerprinting. In fact, since a malicious web page
in many situations can not only figure out which browser extension has
the random UUID, but also uniquely identify the user, the randomization
of UUIDs amplifies the effect of a revelation attack rather than mitigating
detection possibilities. The problem with randomization of UUIDs is known,
and has been a topic of discussions among browser developers [1], as well
as presented as an attack against a built-in browser extension which takes
screenshots for Firefox [13]. Although this attack requires user interaction, it
is important to study how many of the Firefox and Chrome extensions can
be exploited without the need for user interaction.

Empirical studies To see how many extensions are susceptible to the reve-
lation attack without user interaction, and how many web pages probe for
extensions, we conduct several empirical studies.

* We download all extensions for Firefox and Chrome and determine
that, in theory, 1,301 (~94.41%) and 10,459 (~89.91%) of the Firefox
and Chrome extensions respectively that might inject content are sus-
ceptible to the revelation attack.

* We check how many of the extensions susceptible to the revelation
attack actually reveal themselves, where the attacker model is a generic
web developer with the ability to host a web page visited by the
victim. While the victim is on the attacker web page, the attacker will
attempt to make the installed browser extensions inject content to
make them reveal themselves, with the hope of determining exactly
which browser extensions are being executed based on the injected
content. If the randomized token proves stable enough, the attacker
may also use it to track the victim on the Web. This attacker model
fits a wide range of possible attackers, from small and obscure web
pages, to top-ranked web applications. To emulate this, we check how
many extensions reveal themselves based on where the extension is
defined to inject content, and whether the actual content on the web
page matters, showing that 2,906 out of 13,011 (~22.3%) extensions
reveal themselves on actual pages.

1 INTRODUCTION 181

* We visit the most popular 20 web pages for each of the Alexa top 10,000
domains, and find that 2,572 out of those 10,000 domains probe for
WARSs.

“Latex Gloves” mitigation approach In popular culture, crime scene in-
vestigators frequently use latex gloves to avoid contaminating a crime scene
with fingerprints. In this work, our goal is to prevent that extensions leave
any “fingerprints” that are detectable by an attacker web page, be it through
a probing attack or a revelation attack. For this reason, we named our ap-
proach “Latex Gloves” for extensions.

A key feature of our approach is its generality. The mechanism is para-
metric in how whitelists (or, dually, blacklists) are defined, with possibilities
of both web pages and extensions having their say. Extension manifest files
can be used for automatic generation of whitelists already. While it might be
suitable to let the advanced user affecting the whitelists, the goal is to relieve
the average user from understanding the workings and effects of web pages
and browser extensions. For the whitelist, which defines which extensions
are allowed to reveal themselves to the web page, there are several options,
each with its own benefits and drawbacks. For example, a mechanism simi-
lar to Google Safe Browsing [28] can be employed, where browser vendors
can provide blacklists for our mechanism containing web pages known to
perform extension fingerprinting. This would put the burden on the browser
vendors to keep the blacklist up to date. Another option would be to allow
web pages to specify a whitelist, similar to how a Content Security Policy
(CSP) [58] is defined. Naturally, there is a big risk web pages would simply
try to deny all extensions any access, greatly limiting a user’s intentions.
Another option is a simple interface that allows users to classify websites
into sensitive (e.g., bank) and insensitive (e.g., news portal), so that it is
possible to configure whether an extension is triggered on a(n) (in)sensitive
website. Yet another option is an all-or-nothing policy: either all extensions
are triggered on all insensitive websites or no extensions are triggered on any
sensitive websites. This would keep interaction with the user to a minimum.
Each option has advantages and disadvantages, and usability studies can
help determine the most suitable alternatives.

Our vision is to have direct browser support for Latex Gloves. However,
in order to aid evaluation of the general mechanism, we present a proof-
of-concept prototype consisting of a Chromium browser modification, a
Chrome extension and a web proxy. This prototype allows the whitelist-
ing of those web pages that are allowed to probe for extensions, and the
whitelisting of those extensions that are allowed to reveal themselves to web

pages.

LATEX GLOVES: PROTECTING BROWSER EXTENSIONS FROM
182 PROBING AND REVELATION ATTACKS

Contributions In this work, we present the first large-scale empirical study
of browser extensions on both Firefox and Chrome based on the revelation
attack, in order to determine how fingerprintable the browser extensions —
and the users of browser extensions — are, in the presence of a random WAR
URL scheme. Additionally, we propose a countermeasure based on two
whitelists, defining which web pages may interact with which extensions
and vice versa, thus allowing users to avoid being fingerprinted or tracked
by untrusted web sites. We finally give some guidelines to avoid this security
issue for browser developers.
The main contributions of this paper are:

Revelation attack on Firefox. We demonstrate how to derandomize Firefox
extensions through revelation attacks (Section 4).

Empirical studies of Firefox and Chrome extensions. We present large-scale
empirical studies of Firefox and Chrome extensions regarding reve-
lation attacks (Section 4), where we determine how ~ 90% out of all
extensions injecting content can be uniquely identified in spite of a
randomization scheme, as well as evaluating how many extensions
can be detected with a revelation attack, based on the attacker model.

Empirical study of the Alexa top 10,000. We report on an empirical study
over the Alexa top 10,000 domains, with up to 20 of the most pop-
ular pages per domain to determine how widely the probing attack
(Section 3) is used on the Web.

Resetting Firefox random UUID. We investigate the user actions required
to reset the random UUID of a Firefox extension, in order to remove
a unique fingerprint accidentally introduced by Mozilla, on the most
prominent operating systems: Windows, Mac OSX and Linux.

Design of a mechanism against the two attacks. We give the design for “La-
tex Gloves” (Section 5), a mechanism against both probing and reve-
lation attacks using whitelists to specify which web sites are allowed
to interact with which extension’s WARs, and which extensions are
allowed to interact with which web sites.

Proof of concept prototype. We implement a proof of concept prototype
(Section 6) consisting of a modified Chromium browser, a browser
extension and a web proxy, all based on the whitelisting mechanism.
Our prototype is evaluated (Section 7) against two known attacks
(extension enumeration [55] and timing attack [53]).

2 BACKGROUND 183

Recommendations for browser developers. We use key insights from our
empirical studies to give recommendations (Section 8) to browser
developers for a browser extension resource URL scheme.

2 Background

An extension is a program, typically written in a combination of JavaScript,
HTML and CSS. Browser extensions have become a vital piece in the modern
browser as they allow users to customize their browsing experience by
enriching the browser functionality, e.g. by altering the DOM or executing
arbitrary scripts in the context of a web page.

JavaScript code in a browser extension can roughly be classified as
background pages and content scripts. Background pages are executed in the
browser context and cannot access the DOM of the web page. Instead, they
are allowed to access the same resources as the browser, e.g. cookies, history,
web requests, tabs and geolocation. However, in order to make use of these
capabilities the user has to explicitly grant most of them.

Content scripts are files that is executed in the context of a web page.
Although the content scripts live in isolated worlds, allowing them to make
changes to their JavaScript environment without conflicting with the web
page or any other content scripts, they have access to the same DOM struc-
ture as the main web content. As content scripts are executed in the context
of the web page, the content scripts can read and modify the DOM of the web
page the browser is visiting, as well as inject data such as images and other
scripts into the web page [44, 26]. Content scripts can only use a subset of the
extension API calls (“extension”, “i18n”, “runtime” and “storage”), neither
of which need approval from the user. In case the content scripts need access
to more privileged extension APIs, they can only access them indirectly by
communicating with the background pages through message passing. As
the access of the privileged API calls goes through the background page via
message passing, the user must approve them upon installing the extension.

The structure of an extension is defined in a manifest file, called mani-
fest.json, which is a mandatory file placed in the extension’s root folder [46,
30]. The manifest file contains, among other things, which files belong to the
background page, which files belong to the content script, which permissions
the extension requires, and which resources can be injected into the web
page. An example of a manifest file can be seen in Figure 5.2, which specifies
the background page to be the JavaScript file background.js and the content
script (content_scripts) to use the JavaScript file content_script.js, and be
executed on all domains that matches the domain example.com. It defines two
WARS (web_accessible_resources), which are resources that can be injected

LATEX GLOVES: PROTECTING BROWSER EXTENSIONS FROM

184 PROBING AND REVELATION ATTACKS
1 {
2 "manifest_version": 2,
3 "name": "Example",
4 "version": "1.0",
5 "background": {
6 "scripts": ["background.js"]
7 I
8 "content_scripts": [
9 {
10 "matches": ["x://x.example.com/*"],
11 "js": ["content_script.js"]
12 }
13 1,
14 "web_accessible_resources": [
15 "images/img.png",
16 "scripts/myscript.js"
17 1,
18 "permissions": ["webRequest"]
19 }

Figure 5.2: Example of a manifest.json file

into the web page from the content script. The path for the WARSs is the path
from the extension’s root folder to the resources. The extension also asks for
the permission webRequest, which indicates the extension’s background page
want the ability to intercept, block and modify web requests.

Browser extensions scope In the particular case of content scripts, browser
extensions insert their JavaScript files in those web pages explicitly defined
by the extension’s developers in the manifest file. Concretely, there is a
mandatory property named matches which indicate the web pages the con-
tent script should be injected into. URLs can be defined following a match
pattern syntax, which is reminiscent of regular expressions, operating on a
<scheme>://<host><path> pattern [18]. Background pages are not affected by
the matches property. Instead, they remain idle until a JavaScript event such
as a network request or message passing coming from an arbitrary content
script, triggers their code, after which they return to an idle state.

Web Accessible Resources If an extension wants to inject a resource, such
as an image or a script, into a web page, the recommended way is to make the
resource “web accessible”. WARs are files that exist in a browser extension

3 PROBING ATTACK 185

but can be used in the context of a web page. A browser extension must
explicitly list all WARs through the web_accessible_resources property in the
manifest file [50, 29].

WAR URLs are different for Firefox and Chrome: moz-extension://<ext-
UUID>/<path> and chrome-extension://<ext-UUID>/<path> in Firefox and Chrome,
respectively. In Firefox, <ext-UuID> is a randomly generated UUID for each
browser instance, and is generated when the extension is installed [50]. How-
ever, for Chrome, <ext-UUID> is a publicly known 32 character string derived
from the RSA public key with which the extension is signed, encoded us-
ing the “mpdecimal” scheme. WAR URLs in Chrome have the <ext-uuIp>
hardcoded as the “hostname” part. For both Firefox and Chrome, the rec-
ommended way of getting the URL of the resource is to use the built-in
API, which is browser.extension.getURL("path") in the case of Firefox [45], and
chrome.runtime.getURL ("path") for Chrome [25]. Since Chrome extensions have
a publicly known extension UUID, an attacker could enumerate all installed
extensions which have WARs (See Section 3).

Browser profiles and extension UUIDs In Chrome and Firefox, data such
as bookmarks, passwords and installed extensions is stored in a browser
profile [49]. A browser installation may have several browser profiles, each
with its own data. Because Firefox’s extension UUIDs are randomized, the
same extension installed in multiple browser profiles will have a different
UUID for each profile. In Chrome, which uses fixed extension UUIDs, an
extension installed in multiple browser profiles will use the same extension
UUID in each profile.

3 Probing attack

When probing for an extension, JavaScript running in a web page tries to
determine the presence of a browser extension in the browser in which the
web page has been loaded.

One way of performing the extension probing is by requesting a browser
extension’s WARs through the publicly known URLs for these resources.
This is schematically shown in Figure 5.1a where () denotes the request
made by the web page to probe for a browser extension’s WAR. A success-
ful response to this request (denoted by) indicates the presence of the
extension to which the WAR belongs.

Probing for an extension in itself does not mean an attack is taking place.
It is not an attack if, e.g., Google probes for the ChromeCast extension on
YouTube.com since this is the extension developer who probes for their own
extension. However, if it is not the extension developer who is probing for

LATEX GLOVES: PROTECTING BROWSER EXTENSIONS FROM
186 PROBING AND REVELATION ATTACKS

Table 5.1: Alexa top 10,000 domains probing for Chrome extensions. Note
that a domain may appear in several rows and/or columns.

same domain | other domain | YouTube

top frame 185 15 4

sub frame 36 2,399 2,277
Total 2,572

the browser extension, but rather a third party with the intent of discovering
installed extensions to, e.g., increase the entropy for browser fingerprinting,
the probing becomes a probing attack. Attackers may use a probing attack
to detect the presence of any of the known browser extensions, thereby
enumerating the installed browser extensions in a victim’s browser.

Sjosten et al. [55] explore the Alexa top 100,000 domains to examine how
many of them probe for WARs on their front page and their reasons for
doing so. Their research shows that web developers and their applications
may probe for WARs for legitimate reasons. They find only 66 domains,
none in the top 10,000, and surmise that this is caused by the technique not
being widely known.

We repeat the experiment using a different detection method, in order to
study how this problem has developed over time. Instead of the top 100,000,
we limit ourselves to the top 10,000, but perform a deeper study by visiting
up to twenty of the most popular web pages on each domain. We also gather
metrics that indicate whether the probing is due to a third-party web origin,
or whether it originates from the domain itself.

Setup We use a modified version of Chromium 63.0.3239.84, which allows
us to monitor requests for WAR URLs from a Chrome extension, as described
in Section 6. The entire process is automated using Selenium 3.8.1.

When visiting a web page, we wait for up to 10 minutes for the web
page to load. Once loaded, we wait an additional 20 seconds in order for any
JavaScript on the web page to execute.

During this time, a custom browser extension monitors any requests
made towards chrome-extension:// URLs and logs them. In addition to the
WAR URL itself, we also log whether the request came from the parent frame
or a sub frame, as well as the web origin from which the request occurred.

Results Starting from the list of top 10,000 domains according to Alexa, we
queried Bing to retrieve the most popular twenty pages per domain. Bing
returned 180,471 URLs for 9,640 domains. We further disregard domains for
which Bing did not return any results. Of the 180,471 URLs, we were able to
visit 179,952 spread over 9,639 domains.

4 REVELATION ATTACK 187

An overview of the results is shown in Table 5.1. In total, out of the 10,000
domains, 2,572 probed for 45 different extensions from either the top frame
or a sub frame. Of the domains that requested a WAR from the top frame,
185 had not redirected the browser to another domain, while 15 did. In the
latter case, 4 redirected to YouTube.com. In the other cases, WARs were
requested from a sub frame: 36 domains loaded the sub frame from the same
domain, while 2,399 loaded it from a third-party domain. Strikingly, 2,277 of
those sub frames originated on YouTube.com where most of these requests
were probing for the ChromeCast browser extension.

Our results are different from Sjosten et al. [55], which may be attributed
to the different methodology or an increase in extension probing. No mat-
ter the reason for the discrepancy, probing is both common and relevant.
Although YouTube.com probing for ChromeCast is not a probing attack,
most of the remaining extensions being probed for (e.g. popular extensions
such as AdBlock [10], AdBlock Plus [2] and Ghostery [6]) constitute probing
attacks.

4 Revelation attack

In an effort to eliminate the extension probing attack, Mozilla implemented
a randomization scheme in its extensions” UUIDs. Since each extension is
given a random UUID upon installation, it is impossible to compose the
URL of a WAR to launch a probing attack without knowing that random
UUID. However, it is possible for an attacker to learn the random UUID of
an extension through an extension revelation attack.

In an extension revelation attack, JavaScript running in a web page tries
to determine the presence of a browser extension by monitoring the web
page for new content which references WARs. Although any introduced
DOM modification might uniquely identify an extension [56], an injected
WAR URL contain a unique UUID for each profile, which in turn can be
used to track users. Also, due to the nature of the WAR URLs, a vast majority
of all extensions injecting content with WAR URLs can still be uniquely
identifiable, in spite of the randomization scheme, indicating it might make
more harm than good.

Figure 5.1b displays the revelation attack. JavaScript in a web page de-
tects that a browser extension has inserted a reference to a WAR ((D), and
can now deduce the presence of this extension.

In the case of Firefox, the revelation attack reveals a WAR URL, which
consists of a random UUID and a path component. While the random UUID
itself is insufficient to derandomize the extension, it can be used as a basis
for a probing attack (@ and).

LATEX GLOVES: PROTECTING BROWSER EXTENSIONS FROM
188 PROBING AND REVELATION ATTACKS

It is important to realize that a probing attack may not be needed in
order to derandomize Firefox’s random UUIDs. In Section 4.1, we show that
the path component of the WAR URL, which is not randomized in Firefox,
contains enough information to derandomize an extension’s random UUID
in many cases. In addition, because an attacker can retrieve the content of a
WAR and compute a hash over it, it is possible to derandomize an extension
even if the full WAR URL is randomized.

Furthermore, because the random UUID is unique per “browser in-
stance”, it can also be used as a unique fingerprint to deanonymize web
users through the revelation attack. As we show in Section 4.2, it is not trivial
to remove this unique fingerprint from the browser.

The developers of Google’s Chrome browser have expressed interest in
implementing a similar randomization scheme [8]. In Section 4.3, we study
the impact of adopting this randomization scheme on Chrome extensions.
The results of both Section 4.1 and Section 4.3 are summarized in Table 5.2,
where “Path” is the amount of extensions that can be derandomized based
on the path, “Hash” based on the sha256 hash digest of the content of the
WARSs, and “Path U Hash” the union of those sets.

Finally, in Section 4.4 we perform an empirical study of all available
Firefox and Chrome extensions to determine how many of them are affected
by the revelation attack, revealing themselves and their users to attackers
simply by visiting an attacker’s web page.

4.1 Derandomizing Firefox extensions

Since Firefox employs random UUIDs, the enumeration techniques pre-
sented in [55, 53] cannot be used. Instead, the extension must reveal itself
for an attacker to get hold of the random UUID. In order to derandomize a
Firefox extension, the extension must meet the following criteria. First, the
extension must have at least one defined WAR, indicating it might inject
a resource. Second, the extension must make a call to either of the func-
tions browser.extension.getURL, chrome.extension.getURL OF chrome.runtime.getURL,
which are functions that, given an absolute path from the root of the exten-
sion to the WAR, will return the full moz- extension://<ext-UUID>/<path> URL.
For the rest of this section, we will group those functions together as getURL().
Although these API functions are executed in the context of the extension,
i.e. they cannot be called directly from the web page, if the extension injects
the WAR in this manner, the random UUID will be revealed to the web page
as part of the WAR URL. If this happens, and the attacker gets the UUID,
then how many extensions can be uniquely identified based on the injected
WAR URL?

4 REVELATION ATTACK

189

Table 5.2: Breakdown of the uniqueness detectability for browser extensions,

assuming a randomized schema with the ability to probe.

Extensions total Path Hash Path U Hash

Firefox 1,378 | 1,107 (80.33%) 1,292 (93.76%) 1,301 (94.41%)
Chrome 11,633 | 7,214 (62.01%) | 10,355 (89.01%) | 10,459 (89.91%)
Total 13,011 | 8,321 (63.95%) | 11,647 (89.52%) | 11,760 (90.39%)

To determine this, we scraped and downloaded all free Firefox exten-
sions from the Mozilla add-on store [47]. The extensions are valid for Firefox
57 and above, as it is the first Firefox version to only support WebExten-
sions [51], indicating all will receive a random UUID when installed. The
scrape was done on February 23, 2018, giving us 8,646 extensions. All of
these extensions were unpacked, and their manifest file examined for the
web_accessible_resources key, resulting in 1,742 extensions having at least one
defined WAR. The mere presence of a WAR in an extension does not mean
that this resource will ever be injected. We took the 1,742 extensions with
declared WARs, and checked how many of them call a geturL() function, as
this will construct the WAR URL to be injected to the web page. This resulted
in a total of 1,378 extensions, indicating ~79.10% of all Firefox extensions
with declared WARs can reveal their random UUID.

Having access to only the random UUID is not sufficient. The path com-
ponent present in a WAR URL can give away the identity of the extension, if
there is a mapping between a path and the corresponding extension. Out of
the 1,378 extensions that call a getURL() function, 1,107 extensions provide
at least one unique path, i.e. the full path to a resource. Aside from the
WAR URL, a potential attacker also has access to the contents of the WAR.
We investigated the contents of the extensions” WARs to determine how
unique they are by calculating a hash digest over the contents. A total of
1,292 browser extensions have a unique digest when hashing their WARs,
where a different hash digest indicate a difference in content between the
WAREs of the different browser extensions. We then took the union of the
two sets of browser extensions with at least one unique path and a unique
digest, yielding a total of 1,301 browser extensions to be uniquely identifi-
able. Although only ~15.05% of all extensions can be uniquely identified, it
is ~94.41% of all extensions that have the possibility to inject a WAR.

4.2 Resetting Firefox’s random UUID

For Firefox, each UUID is “randomly generated for every browser

instance” [50]. However, it is not clear what “browser instance” means in this
setting. In order to determine when the random UUID of a browser extension
is being reset in Firefox, we tried different approaches on three operating

LATEX GLOVES: PROTECTING BROWSER EXTENSIONS FROM
190 PROBING AND REVELATION ATTACKS

systems: Windows 10, Linux (Debian) and Mac OSX. The approaches were
restarting, updating and re-installing the browser, updating and re-installing
the extension, switching the browser tab to incognito mode and clearing the
cache and cookies of the browser. The result can be found in Table 5.3, and
for the rest of this subsection, we will briefly cover the differences between
the operating systems.

None of the operating systems change the internal UUIDs upon restarting
the browser, indicating “browser instance” from the documentation does
not mean “started browser process”. When re-installing the browser, the
default behavior for the Windows 10 installer is to reset the standard options,
which includes removing the old browser extensions. As this would force
a user to re-install the browser extensions, each browser extension would
get a new random UUID. However, a user has the option of not resetting
the standard options, along with not removing the old browser extensions.
Hence, uninstalling Firefox on Windows keeps all settings, and it is up to
the user to decide to keep or remove them when re-installing the browser.
This is not the case for Linux and Mac OSX. For both operating system:s, it
is up to the user to manually remove the profile folder (default is .mozilla
in the home folder for Linux, and Library/ApplicationSupport/Firefox in Mac
OSX) in order to remove the old browser extensions upon re-installing the
browser, as they are not prompted about a default option of resetting the
standard options.

For all operating systems, the UUID was regenerated when reinstalling
the extension, given that the browser was restarted between uninstalling
and reinstalling the extension. If the browser was not restarted, the profile
file containing the data would not change, giving the new installation the
same UUID.

On all platforms, clearing the profile (i.e. removing the actual profile
folders) would force a user to re-install all extensions, which means they
would get a new random UUID.

4.3 Derandomizing Chrome extensions

As Chrome does not employ random UUIDs, the technique presented by
Sjosten et al. [55] still works. However, as Chromium developers plan to em-
ploy random UUIDs, we performed the same experiment as for Firefox. In
total, we scraped 62,994 free extensions from the Chrome Web Store [24]. Out
of those, 16,280 defined web_accessible_resources with at least one correspond-
ing WAR. The amount of extension that called either chrome.runtime.getURL
or chrome.extension.getURL was 10,764. We also checked the extensions that
called chrome.runtime.id (728 extensions), which return the extension’s UUID,
and the ones that hardcoded their extension UUID into a resource URL (141

4 REVELATION ATTACK 191

Table 5.3: Actions which result in UUID regeneration for each of the major
operating systems. “Yes” or “No” means that the action did or did not cause
UUID regeneration respectively. Notes: (*) Firefox’s installer on Windows
prompts the user to reset settings and remove extensions, which is enabled
by default, whereas for Linux and Mac OSX (*), the default is to keep all
settings.

Linux [Mac OSX | Windows

Restarting browser No
Updating browser No
Re-installing browser No* | Yes*
Updating extension No
Re-installing extension w/ browser restart Yes

w /o browser restart No
Incognito mode No
Clearing cache and cookies No
Clearing the profile Yes

extensions), with the assumption they will change to call getUrRL() if Chrome
adopts random UUIDs. With this, the total amount of detectable extensions
would be 11,633 extensions, which corresponds to ~71.46% of all extensions
with at least one WAR declared. Assuming random UUIDs for Chrome,
we must check if a path can uniquely identify an extension. We applied
the same uniqueness procedure as in Section 4.1, finding 7,214 extensions
being unique without the need for any content hashing. When hashing the
content of the WARs, we got a total of 10,355 browser extensions, and the
union of those two sets yield a total of 10,459 uniquely identifiable browser
extensions. While only being ~16.60% of all extensions, it is ~89.91% of all
browser extensions that have the possibility to inject a WAR.

4.4 Extensions revealing themselves to web pages

As browser extensions can inject WARs into a web page to allow it access
in the domain of the web page, the WARs are visible to JavaScript executed
in the origin of this web page. A web page can scan for these WARs in
order to reveal installed browser extensions, as well as to deanonymize the
visitor: from the WARs, an attacker can infer the installed extension, and
from Firefox browser extensions’ random UUIDs, the attacker can identify
the visitor.

For this experiment, we consider all 8,646 Firefox extensions, but are
also interested in the 62,994 Chrome extensions. As Chrome are considering
random UUIDs, the findings are relevant to their future development plans.

LATEX GLOVES: PROTECTING BROWSER EXTENSIONS FROM
192 PROBING AND REVELATION ATTACKS

Setup We use Selenium 3.9.1 with Firefox 58.0.1 and Chromium 64.0.3282.167
to automate the process.

For each browser extension, we visit a web page through mitmproxy
2.0.2 [21] with a custom addon script. In order to be able to manipulate web
pages served over HTTPS, both Firefox and Chromium were configured to
allow untrusted SSL certificates.

The mitmproxy addon script injects a piece of attacker JavaScript code
in the web page which walks through the HTML tree and extracts any
attributes that contain chrome-extension:// Or moz-extension:// present in the
web page. In addition, because the CSP may prevent the execution of injected
JavaScript, the mitmproxy addon script disables CSP if present.

Because browser extensions may inject content only after a while, the
attacker script also installs a mutation observer which repeats the scan every
time a change to the web page is detected. With this setup, we can detect the
injection of WARs at any point in the web page’s lifetime. For every page
visit, we wait for up to one minute for the page to load before aborting that
page visit. When a page is successfully loaded, we wait for five seconds to
let any JavaScript on the page run its course.

Dataset extensions Because of the way Firefox extensions work, we only
consider those extensions which seemingly make a call to getURL () and which
have web accessible resources. After this filtering step, 1,378 out of the 8,646
Firefox extensions remain for our study:.

Similarly for Chrome, we retain 11,633 out of the total 62,994 Chrome
extensions.

Dataset URLs These 13,011 extensions (1,378 Firefox + 11,633 Chrome)
will only execute on a web page if the URL matches the regular expres-
sions in their manifest file. For instance, an extension which lists http:
//example.com/x in its manifest file, will not execute when visiting, e.g., http:
//attacker.invalid/index.html. Extensions can only reveal themselves when
they are executing on a web page they were designed for, e.g by checking for
the presence of a certain keyword in the URL. Because of this, it is important
to visit the right URLs.

To determine the set of URLs we should visit for a particular extension,
we make use of the CommonCrawl dataset [5]. This dataset contains data
about ~4.57 billion URLs from a wide variety of domains. From the 13,011 ex-
tensions, we extracted 24,398 unique regular expressions and matched them
against the CommonCrawl dataset using the regular expression matching
rules specific to the manifest file specification. For each regular expression,
we only consider the first 100 matches. For each extension, which can have

4 REVELATION ATTACK 193

many regular expressions in its manifest, we combine all matching URLs
and take a random subset of maximum 1,000 URLs. In total we obtained
506,215 unique URLs from the CommonCrawl dataset that match the regular
expressions from the extensions’ manifest files. We call this set of URLSs the
“real” URLs.

From the “real” URLs, we derive two extra sets of URLs by considering
that an attacker can host a copy of a real web page on a different web host.
For instance, the web page at http://www.example.com/abc could be hosted on
an attacker-controlled http://www.attacker.invalid/abc. We call this cloned set
of “real” URLs, where the hostname has been replaced by attacker.invalid,
the “attackerhost” URLs.

Extensions with more fine-grained regular expressions may require the
attacker to register a domain in DNS. For instance, a regular expression http:
//x.con/abc does not match the attacker.invalid domain which we assume
is under attacker control. Therefore, we also consider a URL set where the
hostname in each URL has been replaced by a hostname with the same top-
level domain, but with an attacker-controlled domain name. For instance, for
http://www.example.com/abc we also consider http://www.attacker.com/abc. Natu-
rally, we chose a domain name of sufficient length and consisting of random
letters, to make sure it was not registered yet. We call this cloned set of “real”
URLs, the “buydns” URLs.

In addition to the real CommonCrawl URLs which match the regu-
lar expressions, we also generate URLs based on those regular expres-
sions by replacing all “*” characters with “anystring”. For instance, we
generate the URL http://x.example.com/anystring for the regular expression
http://+.example.con/*. We call this set of URLs the “generated” URLs.

Dataset web page content Aside from expecting a certain URL, an ex-
tension may also depend on certain HTML elements, HTML structure or
particular text present on a visited web page. To determine whether this is
the case, each web page visited through a URL in the “real” URLSs set, as
well as the derived “attackerhost” and “buydns” sets, is also visited with
all content removed. We visit each of these URLs twice: once with the real
content, and once serving an empty page instead of the real content. For
the “generated” URL set, we only serve empty pages, since there is no way
to determine what type of content should be present on such a URL. A
known practice from previous work is to use “Honey Pages”, empty pages
that create the DOM content of a web page dynamically, based on what
the extension is querying [56, 35]. While “Honey Pages” can provide useful
information to, e.g., find malicious extensions, some extension behavior can
be difficult to trigger in an automated way, as it may not be only nested

LATEX GLOVES: PROTECTING BROWSER EXTENSIONS FROM
194 PROBING AND REVELATION ATTACKS

Table 5.4: Breakdown of Chrome and Firefox extensions, indicating which
how many extensions revealed themselves, how many didn’t, and how
many we were unable to analyze (broken).

Revealed Broken Not revealed Total

Chromium 2,684 412 8,537 | 11,633
Firefox 222 150 1,006 | 1,378
Total 2,906 562 9,543 | 13,011

Table 5.5: Breakdown of extensions that reveal themselves. The number be-
tween brackets indicates the amount of potentially affected users, assuming
no overlaps.

Content-dependent Any content
“real” URL _ “attackerhost” URL _“buydns” URL “real” URL “attackerhost” URL _“buydns” URL Total
Chromium | 289 (3,227947) 217 (2680324) 2 (110) 1281 (17,301512) 891 (14601,057) 4 (1,172) 2,68 (37,812,122)
Firefox | 49 (39,780) 19 (75,940) 0_(0) 138 (649,236) 16 (27,082) 0_(©) 222 (792,038)
Either browser | 338 (3,267,727) 236 (2756,268) 2 (110) TA9 (17950,748) 907 (14628139) 4 (1,172) 2906 (38,604,160)

Table 5.6: Breakdown of revealing Chrome and Firefox extensions, indicating
how many of the extensions revealing themselves that could be uniquely
identified, either through the path, through the content of the WARs, and
the union of those sets.

Revealed Unique path Unique hash | Unique path U hash

Chromium 2,684 2,063 2,603 2,606 (97.09%)
Firefox 222 198 216 216 (97.30%)
Total 2,906 2,261 2,819 2,822 (97.11%)

DOM structures, but also events an extension acts on. In this light, “Honey
Pages” may not be representative of the operation of actual web pages. As
we are interested in whether web pages would be able to employ a revelation
attack with their current structure, our experiments are not using “Honey
Pages”. Instead, we look at the current interaction between web pages and
extensions, providing an indication of how many extensions that are cur-
rently vulnerable. For the best coverage, it would be interesting to combine
our results with “Honey Pages”, but we leave that for future work.

Results The results of the experiment are shown in Tables 5.4 to 5.6.

Out of 13,011 extensions, 2,906 revealed themselves on actual pages. We
suppose this behavior is intentional, but it can be abused by the website
owners to track the users. 9,543 did not reveal themselves and 562 could not
be used in our experiment because of issues with the third-party software
we used in our setup (Selenium, browser-specific or addon-specific issues).

The other remaining 9,543 extensions which call getUrL () and have WARs,
seemingly do not inject any WARs into the web page, or probably more
accurately: we did not trigger the correct code path in the extension that
results in a WAR being injected into a web page. Analyzing these remaining

5 MITIGATION DESIGN 195

extensions via “Honey Pages” could reveal they also inject WARs under the
right circumstances, although none of the web pages we visited would make
them inject content. Nevertheless, our analysis of web page and extension
interaction succeeded in exposing 2,906 extensions which reveal themselves
on web pages.

Of these 2,906 extensions triggered by real URLs, 2,330 depend only
on the URL of the web page visited, and do not depend on the content of
that page, since they execute even when the presented web page is empty.
Moreover, out of the 2,906 extensions that reveal themselves on the right
URLs, 1,149 can be tricked into executing on attacker-controlled web pages.
Only for 6 Chrome extensions (but none of the Firefox extensions) does the
attacker potentially have to register a new domain to host the malicious
website on.

Moreover, for 1,149 of the extensions that can be tricked to execute on an
attacker URL, 911 do not depend on the page content, further easing the life
of the attacker.

The numbers between brackets in Table 5.5 denotes the total number
of extension users affected by these revealing extensions. Assuming there
are no overlaps between the users of the revealing extensions, a total of
38,604,160 web users are vulnerable to the revelation attack through their
installed extensions. For the 792,038 affected Firefox users, this means that
they are uniquely identifiable through the unique fingerprint exposed by
their revealing extensions. The 37,812,122 affected Chrome users do not
suffer from this issue at this point in time, but would also be uniquely identi-
fiable if the Google Chrome developers adopt Firefox’s UUID randomization
scheme.

Furthermore, as seen in Table 5.6, out of the 2,906 revealing extensions,
2,261 have at least one unique path, and 2,819 have at least one WAR with a
unique content. The union of those sets contains 2,822 extensions, indicating
that 97.11% of the 2,906 (97.09% of Chrome and 97.30% of Firefox) revealing
extensions can be uniquely identified.

5 Mitigation design

From the introductory example in Section 1, it is clear that there is a legiti-
mate use-case for being able to probe for WARs. Extensions that want to be
detectable through their WARs, e.g. ChromeCast, would become dysfunc-
tional if probing for WARs was blocked in general. Therefore, preventing
the extension probing attack through a blanket ban on extension probing, is
not an option.

LATEX GLOVES: PROTECTING BROWSER EXTENSIONS FROM
196 PROBING AND REVELATION ATTACKS

In similar vein, preventing extensions from revealing themselves to web
pages is also not an option. The data from Section 4.1 implies that many
extensions may inject content into a web page, and could become dysfunc-
tional if this functionality was no longer available. Extensions ill intent on
revealing themselves may be unstoppable, and we consider them out of
scope, only focusing on those extensions that accidentally reveal themselves.

Our experiments show the different ways through which extensions
reveal themselves by injecting content. From an unrandomized WAR URL
injected in a page, as is the case for Chrome extensions, it is trivial to extract
the UUID to determine the installed extension. As is shown in Table 5.2,
from a WAR URL where just the UUID has been randomized and probing is
possible, as is the case for Firefox extensions, we can deduce the installed
extension with a 80.33% accuracy by considering only the path of the URL,
and the paths tied to each extension. Similarly, we would be able to deduce
the installed extension with a 93.76% accuracy by only looking at the contents
of the resources tied to the extensions, and combining the two approaches,
we can deduce the installed extension with a 94.41% accuracy. Similarly, we
detect Chrome extensions with a 62.01% accuracy based on the path, 89.01%
accuracy based on the content of the resource, and 89.91% accuracy when
we combine the path and the content.

Without breaking the intended functionality provided by existing exten-
sions, we cannot prevent extension probing attacks and extension revelation
attacks in general.

Our envisioned solution, which we call “Latex Gloves” since the goal is
to prevent extensions from leaving fingerprints, is depicted in Figure 5.3.

We prevent extension probing attacks (Figure 5.3a) by allowing a white-
list to specify a set of web pages that may probe for each individual exten-
sion.

For instance, YouTube.com may be allowed to probe for the ChromeCast
extension, so that the extension’s functionality can be used with YouTube
videos. In that case, a request for a WAR in the ChromeCast extension will
be allowed by the policy. However, when the same WAR is requested by
another web page, such as attacker.com, the request is blocked. Similarly, if
YouTube.com would request a WAR from another extension, e.g. AdBlock, it
would be blocked with this particular policy.

We prevent extension revelation attacks (Figure 5.3b) by allowing a
whitelist to specify a set of web pages on which each extension is allowed to
execute.

For instance, the AdBlock extension may be allowed to run on exam-
ple.com. In that case, when example.com is visited, the AdBlock extension
can remove any advertisements from the page. However, the same extension

6 PROOF OF CONCEPT IMPLEMENTATION 197

Probing defense policy: Revelation defense policy:
ALLOW http://example.com =——3» Ext.A ALLOW Ext. A = http://example.com

& - C http://www.example.com
WAR

D Ext. A

B SRR S — |
blocked

WAR

. Ext. B

Our solution
(a) Probing defense (b) Revelation defense

Figure 5.3: Concept design of our proposed defenses for the extension prob-

ing and revelation attacks. Our solution mediates access from the web page

to the extension WARs for the probing defense, and from the extensions to

web pages for the revelation defense. In each case, access is mediated based

on a specified policy.

< - c [http://www.example.com

may be disallowed from running on a website which is trusted by the white-
list policy, thereby not interfering with the revenue stream of that website.
Similar to the probing defense example, the policy here also blocks other
extensions from executing — and thereby potentially revealing themselves
— on example.com.

Conceptually, the policies for both defenses can be visualized in a matrix,
with extensions and web origins as rows and columns respectively. Each ele-
ment in this matrix would then indicate whether access is allowed between
the extension and the web origin.

However, such a matrix would make the assumption that policies for the
probing and revelation defenses cannot conflict, which is not necessarily the
case.

For instance, consider a configuration where AdBlock is installed, and a
banking website bank.com, which is trusted by the whitelist policy. Because
this trust, bank.com should be allowed to probe for AdBlock. However, due
to the sensitive nature of the data on bank.com, the whitelist policy does not
allow AdBlock to operate on the bank.com web pages, although AdBlock
want to execute on every web page.

This conflict between the policies for a particular web origin and exten-
sion illustrates the need for separate whitelisting mechanisms for both the
probing and revelation defenses.

6 Proof of concept implementation

Our prototype implements defenses against both the extension probing
and extension revelation attacks as a proof of concept. Because changing

LATEX GLOVES: PROTECTING BROWSER EXTENSIONS FROM
198 PROBING AND REVELATION ATTACKS

Chromium browser

: E——'
1 request allowed :

mitmproxy

~—— ' o Lt
— M —
|I X request blocked modlﬁéatlon
extensions' web : Q (o)
accessible resources | web request : :
blocking : Chrome web store :

odify manifest.json

ry .] probing defense :

whitelist :

» revelation defense [—] |
whitelist il

Latex Gloves
extension
e ey s e
Figure 5.4: Overview of the prototype implementation of our proposed
defenses: a modified Chromium browser with the Latex Gloves extension

and mitmproxy.

“name": ...,
“version” ...,
“permissions”: [...],

“content_scripts": [...],

browser code can quickly get very complicated, we opted to implement
only the core functionality in the actual browser code, while the bulk of
our prototype is implemented separately as a browser extension and a web
proxy. For adoption in the real world, the full implementation should of
course be embedded in the web browser’s C++ code. However, our proof of
concept implementation still allows to test the effectiveness of our solution.
For simplicity, the proof of concept is designed to allow a security-aware
end user to arbitrarily modify the whitelists. While this is not something
one should assume an arbitrary user would do, we deem it to be good in
order to show the functionality of the whitelisting mechanisms. In a full
implementation, the end user should be queried as little as possible.

As depicted in Figure 5.4, our prototype implementation consists of three
components: a slightly modified Chromium browser, a browser extension
named “Latex Gloves” and a web proxy based on mitmproxy. Our modi-
fications to the Chromium 65.0.3325.181 code consist of nine lines of code
spread over four files. The patches to Chromium, as well as binary packages
compiled for Ubuntu 16.04, our browser extension and our addon script for
mitmproxy 3.0.4 are available upon request to the authors.

6.1 Preventing the probing attack

Chrome extensions can use the webRequest API to observe, modify and
block requests from web pages. The requests that an extension can observe
through the webRequest API, include requests with the chrome-extension://
scheme. However, requests to chrome-extension://<ext-uuId> URIs where
<ext-UUID> is not its own extension ID, will be hidden. Even though requests
to non-installed extension resources, or to chrome-extension:// URIs with an

6 PROOF OF CONCEPT IMPLEMENTATION 199

invalid extension ID are hidden from observation with the webRequest AP,
those URIs are replaced by chrome-extension://invalid internally.

Our prototype needs the ability to monitor requests to all chrome-extension:
// URIs, even for other installed extensions, non-installed extensions or in-
valid extension IDs. In addition, we also want to avoid that Chromium
replaces the URI with chrome-extension://invalid, since we are interested in
the originally requested URI.

To achieve this, we modified the Chromium source code and changed
just two lines of code in two files. First, we disable the check that determines
whether the extension ID of the requested URI matches that of the extension
observing the request. Second, we disable Chromium’s behavior of replacing
invalid chrome-extension:// URISs.

The remainder of this part of the prototype is implemented as a browser
extension which uses this modified webRequest API. Requests to all chrome-
extension:// URIs are monitored by the extension and matched against a
predefined but customizable whitelist. The whitelist maps a web origin
O to a list of allowed extension IDs L. When the browser visits a web
page located in the given web origin O, the extension checks any requested
chrome-extension:// URIs and determines whether they target an extension
in L. In case of a match, the request is allowed, otherwise it is canceled. In
the latter case, it will appear to the web page as if the requested resource is
not accessible, whether the extension is installed or not.

6.2 Preventing the revelation attack

By design, Chrome extensions can specify which URLs they want to operate
on, by listing those URLs in the permissions and content_scripts properties
of the manifest.json file. Restricting the list of URLs on which an extension
is allowed to operate, would help prevent the extension revelation attack
on arbitrary attacker pages, since the extension would not execute on those
pages, and thus not reveal itself. However, this whitelist of URLs is at the
discretion of the extension developer and cannot easily be altered by the
whitelist policy provider.

Our implementation, schematically depicted on the right side of Fig-
ure 5.4, exposes the whitelist on which URLs the extension operates to the
whitelist policy provider, allowing the restriction of the set of URLs on which
the extension operates. Instead of implementing new functionality in the
browser to modify this whitelist, and then exposing it to our browser exten-
sion, we decided to modify the browser extension CRX [19] files, which are
packaged and signed versions of browser extensions, “in flight” when they
are installed or updated from the Chrome web store.

LATEX GLOVES: PROTECTING BROWSER EXTENSIONS FROM
200 PROBING AND REVELATION ATTACKS

Because extensions from the Chrome web store are signed with a private
key, which we cannot obtain, we modified the Chromium browser to not
strictly verify an extension’s signature. This modification consists of six lines
of code in a single file, and disables signature verification on both version
2 and 3 of the CRX file format. It is important to note that, for a real-world
implementation, this should not be done, but rather have the full mechanism
implemented in the browser. We only use this to show and evaluate the core
whitelisting mechanism in the proof of concept prototype.

Since the browser no longer verifies CRX signatures, we are free to
modify web traffic between the browser and the Chrome web store, and
can update the manifest files in extensions” CRX files “in flight” and restrict
the permissions and content_scripts properties according to the wishes of the
whitelist. This CRX rewriting process is implemented in a web proxy as a
mitmproxy addon script.

When the policy changes the hostname whitelist associated with an
extension, the new whitel